An adaptive neuro fuzzy inference system to model the uniaxial compressive strength of cemented hydraulic backfill

The authors thank the staff and the managers of Jinfeng underground gold mine for their helps and cooperation during field and laboratory studies. The company is also acknowledged for the permission to use and publish the data.

[1]  G. F. Kheder,et al.  Mathematical model for the prediction of cement compressive strength at the ages of 7 and 28 days within 24 hours , 2003 .

[2]  J. Pallant SPSS survival manual : a step-by-step guide to data analysis using SPSS version 15 , 2007 .

[3]  Tikou Belem,et al.  MECHANICAL BEHAVIOUR OF CEMENTED PASTE BACKFILL , 2000 .

[4]  Mahmut Bilgehan,et al.  ANFIS-based prediction of moment capacity of reinforced concrete slabs exposed to fire , 2015, Neural Computing and Applications.

[5]  H. Basarir,et al.  Prediction of rock mass P wave velocity using blasthole drilling information , 2019 .

[6]  C. E. D. S. Tango An extrapolation method for compressive strength prediction of hydraulic cement products , 1998 .

[7]  M. Sugeno,et al.  Structure identification of fuzzy model , 1988 .

[8]  Tikou Belem,et al.  Design and Application of Underground Mine Paste Backfill Technology , 2008 .

[9]  Okan Karahan,et al.  Comparison of artificial neural network and fuzzy logic models for prediction of long-term compressive strength of silica fume concrete , 2009, Adv. Eng. Softw..

[10]  Sotiris Tsivilis,et al.  A mathematical model for the prediction of cement strength , 1995 .

[11]  A. Fourie,et al.  Handbook on Mine FIll , 2005 .

[12]  Gokmen Tayfur,et al.  FUZZY LOGIC MODEL FOR THE PREDICTION OF CEMENT COMPRESSIVE STRENGTH , 2004 .

[13]  Julie F Pallant,et al.  SPSS Survival Manual: A Step by Step Guide to Data Analysis Using IBM SPSS , 2020 .

[14]  Arcady Dyskin,et al.  The use of soft computing methods for the prediction of rock properties based on measurement while drilling data , 2017 .

[15]  Bhanwar Singh Choudhary,et al.  Underground void filling by cemented mill tailings , 2013 .

[16]  Hadi Fattahi,et al.  Indirect estimation of deformation modulus of an in situ rock mass: an ANFIS model based on grid partitioning, fuzzy c-means clustering and subtractive clustering , 2016, Geosciences Journal.

[17]  Seung-Chang Lee,et al.  Prediction of concrete strength using artificial neural networks , 2003 .

[18]  P. C. Nayak,et al.  A neuro-fuzzy computing technique for modeling hydrological time series , 2004 .

[19]  Ali Karrech,et al.  Green concrete with high-volume fly ash and slag with recycled aggregate and recycled water to build future sustainable cities , 2017 .

[20]  Ali Akbar Asrari,et al.  The performance of ANFIS model for prediction of deformation modulus of rock mass , 2013, Arabian Journal of Geosciences.

[21]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..