Towards observable signatures of other bubble universes

We evaluate the possibility of observable effects arising from collisions between vacuum bubbles in a universe undergoing false-vacuum eternal inflation. Contrary to conventional wisdom, we find that under certain assumptions most positions inside a bubble should have access to a large number of collision events. We calculate the expected number and angular size distribution of such collisions on an observer's "sky," finding that for typical observers the distribution is anisotropic and includes many bubbles, each of which will affect the majority of the observer's sky. After a qualitative discussion of the physics involved in collisions between arbitrary bubbles, we evaluate the implications of our results, and outline possible detectable effects. In an optimistic sense, then, the present paper constitutes a first step in an assessment of the possible effects of other bubble universes on the cosmic microwave background and other observables.