Phenethyl isothiocyanate hampers growth and progression of HER2-positive breast and ovarian carcinoma by targeting their stem cell compartment

[1]  S. Ossareh Mechanisms and Clinical Implications , 2021 .

[2]  F. A. Villela,et al.  Alternative , 2020, Definitions.

[3]  G. Pruneri,et al.  The landscape of d16HER2 splice variant expression across HER2-positive cancers , 2019, Scientific Reports.

[4]  M. Iorio,et al.  WNT signaling modulates PD-L1 expression in the stem cell compartment of triple-negative breast cancer , 2019, Oncogene.

[5]  M. Dugo,et al.  Intratumor lactate levels reflect HER2 addiction status in HER2‐positive breast cancer , 2018, Journal of cellular physiology.

[6]  M. Saidijam,et al.  Emerging ways to treat breast cancer: will promises be met? , 2018, Cellular Oncology.

[7]  J. Meléndez-Zajgla,et al.  The emerging role of lncRNAs in the regulation of cancer stem cells , 2018, Cellular Oncology.

[8]  Qi Zhang,et al.  Phenethyl isothiocyanate inhibits colorectal cancer stem cells by suppressing Wnt/β‐catenin pathway , 2018, Phytotherapy research : PTR.

[9]  T. Robson,et al.  Targeting cancer stem cells in the clinic: Current status and perspectives. , 2018, Pharmacology & therapeutics.

[10]  W. Gradishar,et al.  Phase III, Randomized Study of Dual Human Epidermal Growth Factor Receptor 2 (HER2) Blockade With Lapatinib Plus Trastuzumab in Combination With an Aromatase Inhibitor in Postmenopausal Women With HER2-Positive, Hormone Receptor-Positive Metastatic Breast Cancer: ALTERNATIVE. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[11]  Shengjie Li,et al.  Recent Advances , 2018, Journal of Optimization Theory and Applications.

[12]  A. Scott,et al.  Evolution of anti-HER2 therapies for cancer treatment. , 2017, Cancer treatment reviews.

[13]  S. Loibl,et al.  HER2-positive breast cancer , 2017, The Lancet.

[14]  Tao Zhang,et al.  Sulforaphane enhances the anticancer activity of taxanes against triple negative breast cancer by killing cancer stem cells. , 2017, Cancer letters.

[15]  F. Arfuso,et al.  Wnt signaling in triple-negative breast cancer , 2017, Oncogenesis.

[16]  G. Arpino,et al.  Abstract S3-04: Primary analysis of PERTAIN: A randomized, two-arm, open-label, multicenter phase II trial assessing the efficacy and safety of pertuzumab given in combination with trastuzumab plus an aromatase inhibitor in first-line patients with HER2-positive and hormone receptor-positive metasta , 2017 .

[17]  P. Lollini,et al.  Pathobiological implications of the d16HER2 splice variant for stemness and aggressiveness of HER2-positive breast cancer , 2016, Oncogene.

[18]  E. Tagliabue,et al.  Predictive biomarkers in the treatment of HER2-positive breast cancer: an ongoing challenge. , 2016, Future oncology.

[19]  M. Jackson,et al.  Cancer Stem Cell Plasticity Drives Therapeutic Resistance , 2016, Cancers.

[20]  Bin Du,et al.  Hes1: a key role in stemness, metastasis and multidrug resistance , 2015, Cancer biology & therapy.

[21]  C. Osipo,et al.  Notch-EGFR/HER2 Bidirectional Crosstalk in Breast Cancer , 2014, Front. Oncol..

[22]  S. Srivastava,et al.  Phenethyl isothiocyanate: a comprehensive review of anti-cancer mechanisms. , 2014, Biochimica et biophysica acta.

[23]  M. Campiglio,et al.  Activated d16HER2 homodimers and SRC kinase mediate optimal efficacy for trastuzumab. , 2014, Cancer research.

[24]  S. Srivastava,et al.  Molecular targets of isothiocyanates in cancer: recent advances. , 2014, Molecular nutrition & food research.

[25]  R. Clarke,et al.  Lapatinib inhibits stem/progenitor proliferation in preclinical in vitro models of ductal carcinoma in situ (DCIS) , 2014, Cell cycle.

[26]  M. Pisanu,et al.  Monitoring response to cytostatic cisplatin in a HER2(+) ovary cancer model by MRI and in vitro and in vivo MR spectroscopy , 2013, British Journal of Cancer.

[27]  N. Aceto,et al.  Mammary tumor formation and metastasis evoked by a HER2 splice variant. , 2013, Cancer research.

[28]  Max S Wicha,et al.  HER2 and breast cancer stem cells: more than meets the eye. , 2013, Cancer research.

[29]  M. Wicha,et al.  HER 2 and Breast Cancer Stem Cells : More than Meets the Eye , 2013 .

[30]  Guihua Xu,et al.  Cancer stem cells: the ‘heartbeat’ of gastric cancer , 2013, Journal of Gastroenterology.

[31]  M. Wicha,et al.  Breast Cancer Stem Cells: We've Got Them Surrounded , 2012, Clinical Cancer Research.

[32]  S. Srivastava,et al.  Antitumor activity of phenethyl isothiocyanate in HER2-positive breast cancer models , 2012, BMC Medicine.

[33]  R. Clarke,et al.  A Detailed Mammosphere Assay Protocol for the Quantification of Breast Stem Cell Activity , 2012, Journal of Mammary Gland Biology and Neoplasia.

[34]  Carlos L Arteaga,et al.  Intrinsic and acquired resistance to HER2-targeted therapies in HER2 gene-amplified breast cancer: mechanisms and clinical implications. , 2012, Critical reviews in oncogenesis.

[35]  Max S Wicha,et al.  Breast cancer stem cells, cytokine networks, and the tumor microenvironment. , 2011, The Journal of clinical investigation.

[36]  P. Monaci,et al.  The Human Splice Variant Δ16HER2 Induces Rapid Tumor Onset in a Reporter Transgenic Mouse , 2011, PloS one.

[37]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[38]  D. Spiegelman,et al.  Fruit and vegetable intake in relation to risk of breast cancer in the Black Women's Health Study. , 2010, American journal of epidemiology.

[39]  M. Campiglio,et al.  Shed HER2 extracellular domain in HER2‐mediated tumor growth and in trastuzumab susceptibility , 2010, Journal of cellular physiology.

[40]  Brian D Ross,et al.  Predicting and monitoring cancer treatment response with diffusion‐weighted MRI , 2010, Journal of magnetic resonance imaging : JMRI.

[41]  Tao Zhang,et al.  Sulforaphane, a Dietary Component of Broccoli/Broccoli Sprouts, Inhibits Breast Cancer Stem Cells , 2010, Clinical Cancer Research.

[42]  K. Polyak,et al.  Tumor heterogeneity: causes and consequences. , 2010, Biochimica et biophysica acta.

[43]  Jenny G. Parvani,et al.  An oncogenic isoform of HER2 associated with locally disseminated breast cancer and trastuzumab resistance , 2009, Molecular Cancer Therapeutics.

[44]  S. Ménard,et al.  Tumor-Initiating Cells of HER2-Positive Carcinoma Cell Lines Express the Highest Oncoprotein Levels and Are Sensitive to Trastuzumab , 2009, Clinical Cancer Research.

[45]  M. Wicha,et al.  HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion , 2008, Oncogene.

[46]  P. Altevogt,et al.  Sulforaphane targets pancreatic tumour-initiating cells by NF-κB-induced antiapoptotic signalling , 2008, Gut.

[47]  G. Mills,et al.  Cancer stem cells contribute to cisplatin resistance in Brca1/p53-mediated mouse mammary tumors. , 2008, Cancer research.

[48]  Daniel Birnbaum,et al.  ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. , 2007, Cell stem cell.

[49]  David E. Williams,et al.  Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. , 2007, Pharmacological research.

[50]  E. Holland,et al.  Radiation resistance and stem-like cells in brain tumors. , 2006, Cancer cell.

[51]  N. Swamy,et al.  Phenethyl isothiocyanate (PEITC) inhibits growth of ovarian cancer cells by inducing apoptosis: role of caspase and MAPK activation. , 2006, Gynecologic oncology.

[52]  M. Noble,et al.  Cancer stem cells. , 2006, The New England journal of medicine.

[53]  M. Campiglio,et al.  Role of exon-16-deleted HER2 in breast carcinomas. , 2006, Endocrine-related cancer.

[54]  François Vaillant,et al.  Generation of a functional mammary gland from a single stem cell , 2006, Nature.

[55]  G. Collins The next generation. , 2006, Scientific American.

[56]  G. Dontu,et al.  Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells , 2004, Breast Cancer Research.

[57]  S. Nee More than meets the eye , 2004, Nature.

[58]  J. Freudenheim,et al.  Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype. , 2004, The Journal of nutrition.

[59]  F. Podo,et al.  Triacsin C inhibits the formation of 1H NMR-visible mobile lipids and lipid bodies in HuT 78 apoptotic cells. , 2003, Biochimica et biophysica acta.

[60]  R. Kofler,et al.  Increased lactate production follows loss of mitochondrial membrane potential during apoptosis of human leukaemia cells , 2001, British journal of haematology.

[61]  F. Podo,et al.  Phosphocholine and phosphoethanolamine during chick embryo myogenesis: a (31)P-NMR study. , 2000, Biochimica et biophysica acta.

[62]  M. Hung,et al.  A novel splice variant of HER2 with increased transformation activity , 1998, Molecular carcinogenesis.

[63]  R. Goldbohm,et al.  Epidemiological studies on brassica vegetables and cancer risk. , 1996, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.

[64]  M E Alberts,et al.  An ongoing challenge. , 2018, Iowa medicine : journal of the Iowa Medical Society.

[65]  L. Pauling Diet, nutrition, and cancer. , 1977, The American journal of clinical nutrition.

[66]  F. Welch,et al.  Causes and Consequences , 2017, Nature.