Numerical simulation of quadratic BSDEs

This article deals with the numerical approximation of Markovian backward stochastic differential equations (BSDEs) with generators of quadratic growth with respect to $z$ and bounded terminal conditions. We first study a slight modification of the classical dynamic programming equation arising from the time-discretization of BSDEs. By using a linearization argument and BMO martingales tools, we obtain a comparison theorem, a priori estimates and stability results for the solution of this scheme. Then we provide a control on the time-discretization error of order $\frac{1}{2}-\varepsilon$ for all $\varepsilon>0$. In the last part, we give a fully implementable algorithm for quadratic BSDEs based on quantization and illustrate our convergence results with numerical examples.

[1]  P. Meyer,et al.  Probabilités et potentiel , 1966 .

[2]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[3]  REMARK ON A CHARACTERIZATION OF BMO-MARTINGALES , 1979 .

[4]  N. Kazamaki A sufficient condition for the uniform integrability of exponential martingales , 1979 .

[5]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[6]  D. Talay Numerical solution of stochastic differential equations , 1994 .

[7]  N. Kazamaki Continuous Exponential Martingales and Bmo , 1994 .

[8]  J. Lepeltier,et al.  Existence for BSDE with superlinear–quadratic coefficient , 1998 .

[9]  Nicole El Karoui,et al.  Pricing Via Utility Maximization and Entropy , 2000 .

[10]  S. Graf,et al.  Foundations of Quantization for Probability Distributions , 2000 .

[11]  M. Kobylanski Backward stochastic differential equations and partial differential equations with quadratic growth , 2000 .

[12]  G. Pagès,et al.  Optimal quantization methods and applications to numerical problems in finance , 2004 .

[13]  Jianfeng Zhang A numerical scheme for BSDEs , 2004 .

[14]  B. Bouchard,et al.  Discrete-time approximation and Monte-Carlo simulation of backward stochastic differential equations , 2004 .

[15]  E. Gobet,et al.  A regression-based Monte Carlo method to solve backward stochastic differential equations , 2005, math/0508491.

[16]  P. Imkeller,et al.  Utility maximization in incomplete markets , 2005, math/0508448.

[17]  Michael Mania,et al.  Dynamic exponential utility indifference valuation , 2005 .

[18]  G. Pagès,et al.  A QUANTIZATION TREE METHOD FOR PRICING AND HEDGING MULTIDIMENSIONAL AMERICAN OPTIONS , 2005 .

[19]  Emmanuel Gobet,et al.  Error expansion for the discretization of backward stochastic differential equations , 2006, math/0602503.

[20]  Ying Hu,et al.  BSDE with quadratic growth and unbounded terminal value , 2006 .

[21]  G. Guatteri,et al.  Weak existence and uniqueness for forward–backward SDEs , 2006 .

[22]  S. Menozzi,et al.  A Forward-Backward Stochastic Algorithm For Quasi-Linear PDEs , 2006, math/0603250.

[23]  R. Tevzadze Solvability of backward stochastic differential equations with quadratic growth , 2007, math/0703484.

[24]  Peter Imkeller,et al.  Classical and Variational Differentiability of BSDEs with Quadratic Growth , 2007 .

[25]  Fulvia Confortola,et al.  BSDEs with stochastic Lipschitz condition and quadratic PDEs in Hilbert spaces , 2008 .

[26]  Ying Hu,et al.  Quadratic BSDEs with convex generators and unbounded terminal conditions , 2007, math/0703423.

[27]  François Delarue,et al.  An interpolated stochastic algorithm for quasi-linear PDEs , 2008, Math. Comput..

[28]  Ying Hu,et al.  On the uniqueness of solutions to quadratic BSDEs with convex generators and unbounded terminal conditions , 2009, 0906.0752.

[29]  Ping Ronggang Recent Results From BESII , 2010, 1002.1755.

[30]  Emmanuel Gobet,et al.  L2-time regularity of BSDEs with irregular terminal functions , 2010 .

[31]  Peter Imkeller,et al.  Path regularity and explicit convergence rate for BSDE with truncated quadratic growth , 2009, 0905.0788.

[32]  Gonccalo dos Reis,et al.  Results on Numerics for FBSDE with Drivers of Quadratic Growth , 2010, 1004.2248.

[33]  Adrien Richou,et al.  Numerical simulation of BSDEs with drivers of quadratic growth , 2010, 1001.0401.

[34]  Pauline Barrieu,et al.  Monotone stability of quadratic semimartingales with applications to unbounded general quadratic BSDEs , 2011, 1101.5282.

[35]  A. Richou Markovian quadratic and superquadratic BSDEs with an unbounded terminal condition , 2011, 1111.5137.

[36]  Existence, minimality and approximation of solutions to BSDEs with convex drivers , 2011, 1105.1471.

[37]  Emmanuel Gobet,et al.  Approximation of discrete BSDE using least-squares regression , 2011 .

[38]  Christian Bender,et al.  Least-Squares Monte Carlo for Backward SDEs , 2012 .

[39]  Patrick Cheridito,et al.  BS\Delta Es and BSDEs with non-Lipschitz drivers: Comparison, convergence and robustness , 2010, 1002.0175.

[40]  J. Chassagneux Linear multi-step schemes for BSDEs , 2013, 1306.5548.

[41]  Romuald Elie,et al.  A simple constructive approach to quadratic BSDEs with or without delay , 2013 .

[42]  Freddy Delbaen,et al.  On the uniqueness of solutions to quadratic BSDEs with convex generators and unbounded terminal conditions: the critical case , 2013 .

[43]  Dan Crisan,et al.  RUNGE-KUTTA SCHEMES FOR BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS , 2014 .

[44]  Jean-François Chassagneux,et al.  Linear Multistep Schemes for BSDEs , 2014, SIAM J. Numer. Anal..

[45]  Jean-François Chassagneux,et al.  Numerical Stability Analysis of the Euler Scheme for BSDEs , 2014, SIAM J. Numer. Anal..

[46]  Emmanuel Gobet,et al.  Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions , 2015, Math. Comput..

[47]  Bo Gong Numerical methods for backward stochastic differential equations with applications to stochastic optimal control , 2017 .