A Complete Axiomatization of Quantified Differential Dynamic Logic for Distributed Hybrid Systems

We address a fundamental mismatch between the combinations of dynamics that occur in cyber-physical systems and the limited kinds of dynamics supported in analysis. Modern applications combine communication, computation, and control. They may even form dynamic distributed networks, where neither structure nor dimension stay the same while the system follows hybrid dynamics, i.e., mixed discrete and continuous dynamics. We provide the logical foundations for closing this analytic gap. We develop a formal model for distributed hybrid systems. It combines quantified differential equations with quantified assignments and dynamic dimensionality-changes. We introduce a dynamic logic for verifying distributed hybrid systems and present a proof calculus for this logic. This is the first formal verification approach for distributed hybrid systems. We prove that our calculus is a sound and complete axiomatization of the behavior of distributed hybrid systems relative to quantified differential equations. In our calculus we have proven collision freedom in distributed car control even when an unbounded number of new cars may appear dynamically on the road.

[1]  Michael S. Branicky,et al.  General Hybrid Dynamical Systems: Modeling, Analysis, and Control , 1996, Hybrid Systems.

[2]  Nancy A. Lynch,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[3]  Gilles Dowek,et al.  Provably Safe Coordinated Strategy for Distributed Conflict Resolution , 2005 .

[4]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[5]  Joao P. Hespanha,et al.  Hybrid systems : computation and control : 9th International Workshop, HSCC 2006, Santa Barbara, CA, USA, March 29-31, 2006 : proceedings , 2006 .

[6]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[7]  Thomas A. Henzinger,et al.  Hybrid systems III : verification and control , 1996 .

[8]  Vladimir I. Bogachev,et al.  Deterministic and stochastic differential equations in infinite-dimensional spaces , 1995 .

[9]  David Harel,et al.  First-Order Dynamic Logic , 1979, Lecture Notes in Computer Science.

[10]  Anders P. Ravn,et al.  A Formal Description of Hybrid Systems , 1996, Hybrid Systems.

[11]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[12]  Antonio Bicchi,et al.  Decentralized Cooperative Policy for Conflict Resolution in Multivehicle Systems , 2007, IEEE Transactions on Robotics.

[13]  William C. Rounds,et al.  A Spatial Logic for the Hybrid p-Calculus , 2004, HSCC.

[14]  Peter H. Schmitt,et al.  The liberalized δ-rule in free variable semantic tableaux , 2004, Journal of Automated Reasoning.

[15]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[16]  André Platzer,et al.  Quantified Differential Dynamic Logic for Distributed Hybrid Systems , 2010, CSL.

[17]  Insup Lee,et al.  R-Charon, a Modeling Language for Reconfigurable Hybrid Systems , 2006, HSCC.

[18]  Philipp Rümmer,et al.  Sequential, Parallel, and Quantified Updates of First-Order Structures , 2006, LPAR.

[19]  Richard L. Mendelsohn,et al.  First-Order Modal Logic , 1998 .

[20]  André Platzer,et al.  Differential-algebraic Dynamic Logic for Differential-algebraic Programs , 2010, J. Log. Comput..

[21]  Edmund M. Clarke,et al.  Bayesian statistical model checking with application to Stateflow/Simulink verification , 2010, Formal Methods in System Design.

[22]  Thomas A. Henzinger,et al.  The theory of hybrid automata , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[23]  Sonia R. Sachs,et al.  Design Of Platoon Maneuver Protocols For IVHS , 1991 .

[24]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[25]  Nancy A. Lynch,et al.  Dynamic input/output automata, a formal model for dynamic systems , 2001, PODC '01.

[26]  Ka Lok Man,et al.  Syntax and consistent equation semantics of hybrid Chi , 2006, J. Log. Algebraic Methods Program..

[27]  Robert L. Grossman,et al.  Timed Automata , 1999, CAV.

[28]  Dexter Kozen,et al.  Kleene algebra with tests , 1997, TOPL.

[29]  Vaughan R. Pratt,et al.  SEMANTICAL CONSIDERATIONS ON FLOYD-HOARE LOGIC , 1976, FOCS 1976.

[30]  André Platzer,et al.  Differential Dynamic Logic for Hybrid Systems , 2008, Journal of Automated Reasoning.

[31]  Pravin Varaiya,et al.  SHIFT: A Formalism and a Programming Language for Dynamic Networks of Hybrid Automata , 1996, Hybrid Systems.

[32]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[33]  Raja Sengupta,et al.  Cooperative Collision Warning Systems: Concept Definition and Experimental Implementation , 2006, J. Intell. Transp. Syst..

[34]  Michał Morayne On differentiability of Peano type functions , 1987 .

[35]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[36]  Bernhard Beckert,et al.  Dynamic logic with non-rigid functions a basis for object-oriented program verification , 2006 .

[37]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[38]  André Platzer,et al.  Logical Analysis of Hybrid Systems - Proving Theorems for Complex Dynamics , 2010 .

[39]  Bernhard Beckert,et al.  Dynamic Logic , 2007, The KeY Approach.

[40]  André Platzer Differential Dynamic Logic: Automated Theorem Proving for Hybrid Systems , 2008, Ausgezeichnete Informatikdissertationen.

[41]  C. A. R. Hoare,et al.  An axiomatic basis for computer programming , 1969, CACM.

[42]  Frank S. de Boer,et al.  Verification of Sequential and Concurrent Programs , 1997, Texts and Monographs in Computer Science.

[43]  André Platzer,et al.  Adaptive Cruise Control: Hybrid, Distributed, and Now Formally Verified , 2011, FM.

[44]  Anders P. Ravn,et al.  An Extended Duration Calculus for Hybrid Real-Time Systems , 1992, Hybrid Systems.

[45]  José Meseguer,et al.  Specification and Analysis of Distributed Object-Based Stochastic Hybrid Systems , 2006, HSCC.

[46]  André Platzer,et al.  Quantified differential invariants , 2011, HSCC '11.

[47]  Stephen A. Cook,et al.  Soundness and Completeness of an Axiom System for Program Verification , 1978, SIAM J. Comput..

[48]  André Platzer,et al.  The Complete Proof Theory of Hybrid Systems , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.