Identification of Bouc-Wen type models using the Transitional Markov Chain Monte Carlo method

The Transitional Markov Chain Monte Carlo method is applied.Identification of the distribution of the parameters are found.The methodology is evaluated with simulated and experimental data with good results.The method provides a very accurate estimation of the response of the system.The method reveals the multi-modality of the Bouc-Wen-Baber-Noori hysteresis model. Bayesian model updating techniques are becoming the standard tool for the identification of nonlinear dynamical systems, because unlike other identification schemes which compute maximum likelihood values of parameters, Bayesian techniques provide probabilistic information of the estimates, which can be useful at the moment of making decisions with respect to the selection of parameters and/or mathematical models that simulate the nonlinear behavior experienced by the system. The aim of this paper is to provide an overview of the application of the Transitional Markov Chain Monte Carlo (TMCMC) method to the identification of the parameters of Bouc-Wen type models. The TMCMC method is a Bayesian model updating technique which not only finds the most plausible model parameters but also estimates the probability distribution of those parameters given the data measured at the laboratory. The TMCMC method identifies the structural system and allows the observation of multi-modality of the Bouc-Wen-Baber-Noori (BWBN) model of hysteresis. The performance of the algorithm is assessed using simulated and real data.

[1]  Thomas T. Baber,et al.  Random Vibration Hysteretic, Degrading Systems , 1981 .

[2]  Eleni Chatzi,et al.  Experimental application of on-line parametric identification for nonlinear hysteretic systems with model uncertainty , 2010 .

[3]  Mohammad Noori,et al.  Equivalent linearization of generally pinching hysteretic, degrading systems , 1996 .

[4]  James L. Beck,et al.  Bayesian Updating and Model Class Selection for Hysteretic Structural Models Using Stochastic Simulation , 2008 .

[5]  John E. Mottershead,et al.  Simplified models of bolted joints under harmonic loading , 2005 .

[6]  Eleni Chatzi,et al.  The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non‐collocated heterogeneous sensing , 2009 .

[7]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[8]  Daniel Bedoya-Ruiz,et al.  Identification of Bouc-Wen type models using multi-objective optimization algorithms , 2013 .

[9]  J. Beck,et al.  Bayesian Model Updating Using Hybrid Monte Carlo Simulation with Application to Structural Dynamic Models with Many Uncertain Parameters , 2009 .

[10]  Armen Der Kiureghian,et al.  Generalized Bouc-Wen model for highly asymmetric hysteresis , 2006 .

[11]  Yongmin Yang,et al.  Constrained Kalman Filter for Nonlinear Structural Identification , 2003 .

[12]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  V. K. Koumousis,et al.  Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm , 2008 .

[14]  Y. K. Wen,et al.  Random vibration of hysteretic systems under bi‐directional ground motions , 1986 .

[15]  Meiying Ye,et al.  Parameter estimation of the Bouc–Wen hysteresis model using particle swarm optimization , 2007 .

[16]  Daniel A. Bedoya Estudio de resistencia y vulnerabilidad sísmicas de viviendas de bajo costo estructuradas con ferrocemento , 2005 .

[17]  Oriol Gomis-Bellmunt,et al.  Control of a piezoelectric actuator considering hysteresis , 2009 .

[18]  Keith Worden,et al.  On the identification of hysteretic systems. Part I: Fitness landscapes and evolutionary identification , 2012 .

[19]  Shuenn-Yih Chang,et al.  Development and Validation of a Generalized Biaxial Hysteresis Model , 2007 .

[20]  Greg Foliente,et al.  Hysteresis Modeling of Wood Joints and Structural Systems , 1995 .

[21]  C. K. Dimou,et al.  Identification of Bouc-Wen hysteretic systems using particle swarm optimization , 2010 .

[22]  George Gazetas,et al.  Development of Winkler model for static and dynamic response of caisson foundations with soil and interface nonlinearities , 2006 .

[23]  H. Zhang,et al.  Parameter Analysis of the Differential Model of Hysteresis , 2004 .

[24]  J. Hensman,et al.  Parameter estimation and model selection for a class of hysteretic systems using Bayesian inference , 2012 .

[25]  Yoshiyuki Suzuki,et al.  Identification of hysteretic systems with slip using bootstrap filter , 2004 .

[26]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[27]  Mohammad Noori,et al.  Random Vibration of Degrading, Pinching Systems , 1985 .

[28]  Faris Albermani,et al.  Pinching hysteretic response of yielding shear panel device , 2011 .

[29]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[30]  Mohammed Ismail,et al.  The Hysteresis Bouc-Wen Model, a Survey , 2009 .

[31]  S. Sisson,et al.  A comparative review of dimension reduction methods in approximate Bayesian computation , 2012, 1202.3819.

[32]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[33]  Jorge E. Hurtado,et al.  Experimental and analytical research on seismic vulnerability of low-cost ferrocement dwelling houses , 2010 .

[34]  T. T. Baber,et al.  Modeling General Hysteresis Behavior and Random Vibration Application , 1986 .

[35]  Alex H. Barbat,et al.  Hierarchical semi-active control of base-isolated structures using a new inverse model of magnetorheological dampers , 2010 .

[36]  Eric O. Postma,et al.  Dimensionality Reduction: A Comparative Review , 2008 .

[37]  José Rodellar,et al.  An innovative isolation device for aseismic design , 2009 .

[38]  Yongmin Yang,et al.  Parameter identification of inelastic structures under dynamic loads , 2002 .

[39]  Ka-Veng Yuen,et al.  Recent developments of Bayesian model class selection and applications in civil engineering , 2010 .

[40]  Andrew W. Smyth,et al.  Real-time parameter estimation for degrading and pinching hysteretic models , 2008 .

[41]  Keith Worden,et al.  IDENTIFICATION OF HYSTERETIC SYSTEMS USING THE DIFFERENTIAL EVOLUTION ALGORITHM , 2001 .

[42]  J. Beck,et al.  Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .

[43]  J. Ching,et al.  Transitional Markov Chain Monte Carlo Method for Bayesian Model Updating, Model Class Selection, and Model Averaging , 2007 .

[44]  T. Sireteanu,et al.  USE OF GENETIC ALGORITHMS FOR FITTING THE BOUC- WEN MODEL TO EXPERIMENTAL HYSTERETIC CURVES , 2009 .

[45]  José Rodellar,et al.  Dynamic properties of the hysteretic Bouc-Wen model , 2007, Syst. Control. Lett..

[46]  Yoshiyuki Suzuki,et al.  Improvement Of Parameter Estimation for Non-Linear Hysteretic Systems With Slip By A Fast Bayesian Bootstrap Filter , 2004 .

[47]  Jiuchao Feng,et al.  Real-time nonlinear structural system identification via iterated unscented Kalman filter , 2012 .

[48]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[49]  Nopdanai Ajavakom,et al.  Performance of nonlinear degrading structures: Identification, validation, and prediction , 2008 .