Rationally-engineered reproductive barriers using CRISPR & CRISPRa: an evaluation of the synthetic species concept in Drosophila melanogaster

[1]  Yong Wang,et al.  Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9 , 2017, Science.

[2]  N. Perrimon,et al.  Optimized strategy for in vivo Cas9-activation in Drosophila , 2017, Proceedings of the National Academy of Sciences.

[3]  David A. Brafman,et al.  The Impact of Chromatin Dynamics on Cas9-Mediated Genome Editing in Human Cells. , 2017, ACS synthetic biology.

[4]  N. Gray,et al.  Corrigendum: THZ1 targeting CDK7 suppresses STAT transcriptional activity and sensitizes T-cell lymphomas to BCL2 inhibitors , 2017, Nature Communications.

[5]  A. Bhardwaj,et al.  In situ click chemistry generation of cyclooxygenase-2 inhibitors , 2017, Nature Communications.

[6]  Morten H. H. Nørholm,et al.  Generation of mutation hotspots in ageing bacterial colonies , 2016, Scientific reports.

[7]  Jeremy M. Chacón,et al.  Engineering species-like barriers to sexual reproduction , 2016, Nature Communications.

[8]  Simon L. Bullock,et al.  Augmenting CRISPR applications in Drosophila with tRNA-flanked sgRNAs , 2016, Nature Methods.

[9]  Andrea Crisanti,et al.  A CRISPR-Cas9 sex-ratio distortion system for genetic control , 2016, Scientific Reports.

[10]  Yanhui Hu,et al.  CRISPR guide RNA design for research applications , 2016, The FEBS journal.

[11]  N. Perrimon,et al.  Comparative Analysis of Cas9 Activators Across Multiple Species , 2016, Nature Methods.

[12]  Antonia A. Dominguez,et al.  Transcriptional regulation of hepatic lipogenesis , 2015, Nature Reviews Molecular Cell Biology.

[13]  Andrea Crisanti,et al.  A CRISPR-Cas9 Gene Drive System Targeting Female Reproduction in the Malaria Mosquito vector Anopheles gambiae , 2015, Nature Biotechnology.

[14]  Ethan Bier,et al.  Highly efficient Cas9-mediated gene drive for population modification of the malaria vector mosquito Anopheles stephensi , 2015, Proceedings of the National Academy of Sciences.

[15]  N. Perrimon,et al.  In Vivo Transcriptional Activation Using CRISPR/Cas9 in Drosophila , 2015, Genetics.

[16]  Christopher M. Vockley,et al.  Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers , 2015, Nature Biotechnology.

[17]  Alexandro E. Trevino,et al.  Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex , 2014, Nature.

[18]  Ron Weiss,et al.  Highly-efficient Cas9-mediated transcriptional programming , 2014, Nature Methods.

[19]  Howard Hughes Medical,et al.  Beyond editing: repurposing CRISPR-Cas9 for precision genome regulation and interrogation , 2015 .

[20]  Dali Li,et al.  CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos , 2014, Nature Protocols.

[21]  Meagan E. Sullender,et al.  Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation , 2014, Nature Biotechnology.

[22]  Wolfgang Wurst,et al.  Generation of targeted mouse mutants by embryo microinjection of TALENs. , 2014, Methods.

[23]  Simon L. Bullock,et al.  Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila , 2014, Proceedings of the National Academy of Sciences.

[24]  Hao Yin,et al.  CRISPR-mediated direct mutation of cancer genes in the mouse liver , 2014, Nature.

[25]  F. Reed,et al.  First Steps towards Underdominant Genetic Transformation of Insect Populations , 2014, PloS one.

[26]  E. Marois,et al.  Site-specific genetic engineering of the Anopheles gambiae Y chromosome , 2014, Proceedings of the National Academy of Sciences.

[27]  Frank Jülicher,et al.  Growth control by a moving morphogen gradient during Drosophila eye development , 2014, Development.

[28]  Janghoo Lim,et al.  Bar Represses dPax2 and Decapentaplegic to Regulate Cell Fate and Morphogenetic Cell Death in Drosophila Eye , 2014, PloS one.

[29]  Bob Goldstein,et al.  Engineering the Caenorhabditis elegans Genome Using Cas9-Triggered Homologous Recombination , 2013, Nature Methods.

[30]  Botao Zhang,et al.  Efficient genome editing in plants using a CRISPR/Cas system , 2013, Cell Research.

[31]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[32]  Christopher M. Vockley,et al.  RNA-guided gene activation by CRISPR-Cas9-based transcription factors , 2013, Nature Methods.

[33]  Morgan L. Maeder,et al.  CRISPR RNA-guided activation of endogenous human genes , 2013, Nature Methods.

[34]  Chris P. Ponting,et al.  Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System , 2013, Cell reports.

[35]  D. Stern,et al.  TALE-mediated modulation of transcriptional enhancers , 2013, Nature Methods.

[36]  John M. Marshall,et al.  A Synthetic Gene Drive System for Local, Reversible Modification and Suppression of Insect Populations , 2013, Current Biology.

[37]  Xiaojun Zhu,et al.  Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos , 2013, Cell Research.

[38]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[39]  E. Moreno Design and Construction of “Synthetic Species” , 2012, PloS one.

[40]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[41]  Paul J. Higgins,et al.  Transcription Factors , 2010, Methods in Molecular Biology.

[42]  N. Perrimon,et al.  Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes , 2008, Nature Genetics.

[43]  J. Dow,et al.  Using FlyAtlas to identify better Drosophila melanogaster models of human disease , 2007, Nature Genetics.

[44]  R. Maeda,et al.  An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases , 2007, Proceedings of the National Academy of Sciences.

[45]  Michele P Calos,et al.  Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. , 2004, Genetics.

[46]  H. Okano,et al.  Reaper-mediated inhibition of DIAP1-induced DTRAF1 degradation results in activation of JNK in Drosophila , 2002, Nature Cell Biology.

[47]  M. Fujioka,et al.  The even-skipped locus is contained in a 16-kb chromatin domain. , 1999, Developmental biology.

[48]  Z. Paroush,et al.  Conversion of dorsal from an activator to a repressor by the global corepressor Groucho. , 1997, Genes & development.

[49]  Prof. Dr. José A. Campos-Ortega,et al.  The Embryonic Development of Drosophila melanogaster , 1997, Springer Berlin Heidelberg.

[50]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[51]  J. D. Huang,et al.  The interplay between multiple enhancer and silencer elements defines the pattern of decapentaplegic expression. , 1993, Genes & development.

[52]  Sven Erik Jørgensen,et al.  Ecological engineering : an introduction to ecotechnology , 1989 .

[53]  M. Frasch,et al.  Characterization and localization of the even‐skipped protein of Drosophila. , 1987, The EMBO journal.

[54]  Volker Hartenstein,et al.  The Embryonic Development of Drosophila melanogaster , 1985, Springer Berlin Heidelberg.

[55]  C. Nüsslein-Volhard,et al.  Mutations affecting segment number and polarity in Drosophila , 1980, Nature.