Equivalence between model-checking flat counter systems and Presburger arithmetic
暂无分享,去创建一个
[1] Stéphane Demri,et al. Equivalence Between Model-Checking Flat Counter Systems and Presburger Arithmetic , 2014, RP.
[2] Leonard Berman,et al. The Complexity of Logical Theories , 1980, Theor. Comput. Sci..
[3] Stéphane Demri,et al. On the Complexity of Verifying Regular Properties on Flat Counter Systems, , 2013, ICALP.
[4] Markus Lohrey,et al. Branching-Time Model Checking of One-Counter Processes and Timed Automata , 2013, SIAM J. Comput..
[5] Laurent Fribourg,et al. Proving Safety Properties of Infinite State Systems by Compilation into Presburger Arithmetic , 1997, CONCUR.
[6] Chin-Laung Lei,et al. Modalities for Model Checking: Branching Time Logic Strikes Back , 1987, Sci. Comput. Program..
[7] Christoph Haase,et al. Subclasses of presburger arithmetic and the weak EXP hierarchy , 2014, CSL-LICS.
[8] Joël Ouaknine,et al. Model Checking Flat Freeze LTL on One-Counter Automata , 2016, CONCUR.
[9] Oscar H. Ibarra,et al. Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.
[10] Peter Habermehl. On the Complexity of the Linear-Time mu -calculus for Petri-Nets , 1997, ICATPN.
[11] David Jefferson,et al. Verification Decidability of Presburger Array Programs , 1980, JACM.
[12] Lane A. Hemachandra,et al. The strong exponential hierarchy collapses , 1989 .
[13] Hubert Comon-Lundh,et al. Multiple Counters Automata, Safety Analysis and Presburger Arithmetic , 1998, CAV.
[14] Marvin Minsky,et al. Computation : finite and infinite machines , 2016 .
[15] Nikolaj Bjørner,et al. Z3: An Efficient SMT Solver , 2008, TACAS.
[16] Joseph Y. Halpern,et al. “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.
[17] S. Rao Kosaraju,et al. Decidability of reachability in vector addition systems (Preliminary Version) , 1982, STOC '82.
[18] Grégoire Sutre,et al. On Flatness for 2-Dimensional Vector Addition Systems with States , 2004, CONCUR.
[19] Véronique Bruyère,et al. Durations, Parametric Model-Checking in Timed Automata with Presburger Arithmetic , 2003, STACS.
[20] Valentin Goranko,et al. Model-checking CTL* over flat Presburger counter systems , 2010, J. Appl. Non Class. Logics.
[21] Amit Kumar Dhar. Algorithms for model-checking flat counter systems , 2014 .
[22] Bernard Boigelot. Symbolic Methods for Exploring Infinite State Spaces , 1998 .
[23] Jérôme Leroux,et al. TaPAS: The Talence Presburger Arithmetic Suite , 2009, TACAS.
[24] Marcello M. Bersani,et al. The Complexity of Reversal-Bounded Model-Checking , 2011, FroCoS.
[25] Marius Bozga,et al. Safety Problems Are NP-complete for Flat Integer Programs with Octagonal Loops , 2013, VMCAI.
[26] Philippe Schnoebelen,et al. Model Checking CTL+ and FCTL is Hard , 2001, FoSSaCS.
[27] Joël Ouaknine,et al. Branching-Time Model Checking of Parametric One-Counter Automata , 2012, FoSSaCS.
[28] Joël Ouaknine,et al. Reachability in Succinct and Parametric One-Counter Automata , 2009, CONCUR.
[29] Grégoire Sutre,et al. Flat Counter Automata Almost Everywhere! , 2005, ATVA.
[30] Stéphane Demri,et al. Taming Past LTL and Flat Counter Systems , 2012, IJCAR.
[31] Alain Finkel,et al. How to Compose Presburger-Accelerations: Applications to Broadcast Protocols , 2002, FSTTCS.
[32] Ernst W. Mayr. Persistence of vector replacement systems is decidable , 2004, Acta Informatica.