Equivalence between model-checking flat counter systems and Presburger arithmetic

We show that model-checking flat counter systems over CTL* (with arithmetical constraints on counter values) has the same complexity as the satisfiability problem for Presburger arithmetic. The lower bound already holds with the temporal operator EF only, no arithmetical constraints in the logical language and with guards on transitions made of simple linear constraints. This complements our understanding of model-checking flat counter systems with linear-time temporal logics, such as LTL for which the problem is already known to be (only) NP-complete with guards restricted to the linear fragment.

[1]  Stéphane Demri,et al.  Equivalence Between Model-Checking Flat Counter Systems and Presburger Arithmetic , 2014, RP.

[2]  Leonard Berman,et al.  The Complexity of Logical Theories , 1980, Theor. Comput. Sci..

[3]  Stéphane Demri,et al.  On the Complexity of Verifying Regular Properties on Flat Counter Systems, , 2013, ICALP.

[4]  Markus Lohrey,et al.  Branching-Time Model Checking of One-Counter Processes and Timed Automata , 2013, SIAM J. Comput..

[5]  Laurent Fribourg,et al.  Proving Safety Properties of Infinite State Systems by Compilation into Presburger Arithmetic , 1997, CONCUR.

[6]  Chin-Laung Lei,et al.  Modalities for Model Checking: Branching Time Logic Strikes Back , 1987, Sci. Comput. Program..

[7]  Christoph Haase,et al.  Subclasses of presburger arithmetic and the weak EXP hierarchy , 2014, CSL-LICS.

[8]  Joël Ouaknine,et al.  Model Checking Flat Freeze LTL on One-Counter Automata , 2016, CONCUR.

[9]  Oscar H. Ibarra,et al.  Reversal-Bounded Multicounter Machines and Their Decision Problems , 1978, JACM.

[10]  Peter Habermehl On the Complexity of the Linear-Time mu -calculus for Petri-Nets , 1997, ICATPN.

[11]  David Jefferson,et al.  Verification Decidability of Presburger Array Programs , 1980, JACM.

[12]  Lane A. Hemachandra,et al.  The strong exponential hierarchy collapses , 1989 .

[13]  Hubert Comon-Lundh,et al.  Multiple Counters Automata, Safety Analysis and Presburger Arithmetic , 1998, CAV.

[14]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[15]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[16]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[17]  S. Rao Kosaraju,et al.  Decidability of reachability in vector addition systems (Preliminary Version) , 1982, STOC '82.

[18]  Grégoire Sutre,et al.  On Flatness for 2-Dimensional Vector Addition Systems with States , 2004, CONCUR.

[19]  Véronique Bruyère,et al.  Durations, Parametric Model-Checking in Timed Automata with Presburger Arithmetic , 2003, STACS.

[20]  Valentin Goranko,et al.  Model-checking CTL* over flat Presburger counter systems , 2010, J. Appl. Non Class. Logics.

[21]  Amit Kumar Dhar Algorithms for model-checking flat counter systems , 2014 .

[22]  Bernard Boigelot Symbolic Methods for Exploring Infinite State Spaces , 1998 .

[23]  Jérôme Leroux,et al.  TaPAS: The Talence Presburger Arithmetic Suite , 2009, TACAS.

[24]  Marcello M. Bersani,et al.  The Complexity of Reversal-Bounded Model-Checking , 2011, FroCoS.

[25]  Marius Bozga,et al.  Safety Problems Are NP-complete for Flat Integer Programs with Octagonal Loops , 2013, VMCAI.

[26]  Philippe Schnoebelen,et al.  Model Checking CTL+ and FCTL is Hard , 2001, FoSSaCS.

[27]  Joël Ouaknine,et al.  Branching-Time Model Checking of Parametric One-Counter Automata , 2012, FoSSaCS.

[28]  Joël Ouaknine,et al.  Reachability in Succinct and Parametric One-Counter Automata , 2009, CONCUR.

[29]  Grégoire Sutre,et al.  Flat Counter Automata Almost Everywhere! , 2005, ATVA.

[30]  Stéphane Demri,et al.  Taming Past LTL and Flat Counter Systems , 2012, IJCAR.

[31]  Alain Finkel,et al.  How to Compose Presburger-Accelerations: Applications to Broadcast Protocols , 2002, FSTTCS.

[32]  Ernst W. Mayr Persistence of vector replacement systems is decidable , 2004, Acta Informatica.