Origins of hole doping and relevant optoelectronic properties of wide gap p-type semiconductor, LaCuOSe.

LaCuOSe is a wide band gap (∼2.8 eV) semiconductor with unique optoelectronic properties, including room-temperature stable excitons, high hole mobility ∼8 cm(2)/(Vs), and the capability of high-density hole doping (up to 1.7 × 10(21) cm(-3) using Mg). Moreover, its carrier transport and doping behaviors exhibit nonconventional results, e.g., the hole concentration increases with decreasing temperature and the high hole doping does not correlate with other properties such as optical absorption. Herein, secondary ion mass spectroscopy and photoemission spectroscopy reveal that aliovalent ion substitution of Mg at the La site is not the main source of hole doping and the Fermi level does not shift even in heavily doped LaCuOSe:Mg. As the hole concentration increases, the subgap optical absorption becomes more intense, but the increase in intensity does not correlate quantitatively. Transmission electron microscopy indicates that planar defects composed of Cu and Se deficiencies are easily created in LaCuOSe. These observations can be explained via the existence of a degenerate low-mobility layer and formation of complex Cu and Se vacancy defects with the assistance of generalized gradient approximation band calculations.

[1]  H. Hosono,et al.  Interface atomic structure of LaCuOSe:Mg epitaxial thin film and MgO substrate , 2010 .

[2]  Akira Ohtomo,et al.  Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates , 2010 .

[3]  W. Jaegermann,et al.  Electronic properties of BaCuChF (Ch=S,Se,Te) surfaces and BaCuSeF/ZnPc interfaces , 2010 .

[4]  W. Jaegermann,et al.  Band alignment at the BaCuSeF/ZnTe interface , 2010 .

[5]  H. Ohta,et al.  Fabrication of Atomically Flat ScAlMgO4 Epitaxial Buffer Layer and Low-Temperature Growth of High-Mobility ZnO Films , 2010 .

[6]  A. Zakutayev,et al.  Origin of p-type conduction in single-crystal CuAlO2 , 2009 .

[7]  T. Kamiya,et al.  Low Threshold Voltage and Carrier Injection Properties of Inverted Organic Light-Emitting Diodes with [Ca24Al28O64]4+(4e−) Cathode and Cu2−xSe Anode , 2009 .

[8]  C. Shan,et al.  Degenerate layer at ZnO/sapphire interface , 2009 .

[9]  T. Kamiya,et al.  Origins of High Mobility and Low Operation Voltage of Amorphous Oxide TFTs: Electronic Structure, Electron Transport, Defects and Doping* , 2009, Journal of Display Technology.

[10]  Hideo Hosono,et al.  First-principles study of native point defects in crystalline indium gallium zinc oxide , 2009 .

[11]  Keisuke L. I. Kobayashi Hard X-ray photoemission spectroscopy , 2009 .

[12]  T. Kamiya,et al.  Characterization of copper selenide thin film hole-injection layers deposited at room temperature for use with p-type organic semiconductors , 2008 .

[13]  T. Kamiya,et al.  Low and small resistance hole-injection barrier for NPB realized by wide-gap p-type degenerate semiconductor, LaCuOSe:Mg , 2008 .

[14]  Michael Nolan,et al.  Defects in Cu2O, CuAlO2 and SrCu2O2 transparent conducting oxides , 2008 .

[15]  Hideo Hosono,et al.  Electronic structure of oxygen deficient amorphous oxide semiconductor a‐InGaZnO4–x : Optical analyses and first‐principle calculations , 2008 .

[16]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[17]  Alex Zunger,et al.  Origins of the p-Type Nature and Cation Deficiency in Cu2O and Related Materials , 2007 .

[18]  H. Ohta,et al.  Heavy hole doping of epitaxial thin films of a wide gap p-type semiconductor, LaCuOSe, and analysis of the effective mass , 2007 .

[19]  M. Nolan,et al.  The p-type conduction mechanism in Cu2O: a first principles study. , 2006, Physical chemistry chemical physics : PCCP.

[20]  H. Hosono,et al.  Valence band structure of BaCuSF and BaCuSeF , 2006 .

[21]  H. Ohta,et al.  Excitonic blue luminescence from p-LaCuOSe∕n-InGaZn5O8 light-emitting diode at room temperature , 2005 .

[22]  H. Ohta,et al.  Two-dimensional electronic structure and multiple excitonic states in layered oxychalcogenide semiconductors, LaCuOCh (Ch=S, Se, Te): Optical properties and relativistic ab initio study , 2005 .

[23]  H. Hosono,et al.  Valence-band structures of layered oxychalcogenides, LaCuOCh (Ch=S, Se, and Te), studied by ultraviolet photoemission spectroscopy and energy-band calculations , 2005 .

[24]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[25]  H. Hosono,et al.  Energy band structure of LaCuOCh (Ch = S, Se and Te) calculated by the full-potential linearized augmented plane-wave method , 2004 .

[26]  H. Ohta,et al.  Fabrication of heteroepitaxial thin films of layered oxychalcogenides LnCuOCh (Ln = La–Nd; Ch = S–Te) by reactive solid-phase epitaxy , 2004 .

[27]  Kakuya Iwata,et al.  Degenerate layers in epitaxial ZnO films grown on sapphire substrates , 2004 .

[28]  T. Kamiya,et al.  Title Single-atomic-layered quantum wells built in wide-gap semiconductors LnCuOCh (Ln=lanthanide, Ch=chalcogen) , 2004 .

[29]  H. Ohta,et al.  Mechanism for Heteroepitaxial Growth of Transparent P-Type Semiconductor: LaCuOS by Reactive Solid-Phase Epitaxy , 2004 .

[30]  H. Ohta,et al.  Degenerate p-type conductivity in wide-gap LaCuOS1−xSex (x=0–1) epitaxial films , 2003 .

[31]  Hideo Hosono,et al.  Single‐Crystalline Films of the Homologous Series InGaO3(ZnO)m Grown by Reactive Solid‐Phase Epitaxy , 2003 .

[32]  H. Ohta,et al.  Heteroepitaxial growth of a wide-gap p-type semiconductor, LaCuOS , 2002 .

[33]  H. Hosono,et al.  Band gap engineering, band edge emission, and p-type conductivity in wide-gap LaCuOS1−xSex oxychalcogenides , 2002 .

[34]  Seiji Isotani,et al.  Energetics of native defects in ZnO , 2001 .

[35]  K. Kawamura,et al.  Current injection emission from a transparent p-n junction composed of p-SrCu~2O~2/n-ZnO , 2000 .

[36]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[37]  David C. Look,et al.  Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements , 1997 .

[38]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[39]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[40]  C. Dong,et al.  Synthesis and crystal structure of new rare-earth copper oxyselenides: RCuSeO (R=La, Sm, Gd and Y) , 1994 .

[41]  T. Moustakas,et al.  Electron transport mechanism in gallium nitride , 1993 .

[42]  Yoshihiro Hishikawa,et al.  Interference-Free Determination of the Optical Absorption Coefficient and the Optical Gap of Amorphous Silicon Thin Films , 1991 .

[43]  I. Hamberg,et al.  Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows , 1986 .

[44]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[45]  T. Moss The Interpretation of the Properties of Indium Antimonide , 1954 .

[46]  E. Burstein Anomalous Optical Absorption Limit in InSb , 1954 .

[47]  Baoquan Sun,et al.  Formation mechanism of a degenerate thin layer at the interface of a GaN/sapphire system , 2000 .