Metal accumulation in a biological indicator (Ulva rigida) from the lagoon of Venice (Italy)

[1]  K. Kuma,et al.  Availability of colloidal ferric oxides to coastal marine phytoplankton , 1995 .

[2]  J. Martin,et al.  Level and fate of trace metals in the lagoon of Venice (Italy) , 1995 .

[3]  K. Timmermans,et al.  Iron-mediated effects on nitrate reductase in marine phytoplankton , 1994 .

[4]  P. Malea Bioaccumulation of Aluminium in the Seagrasses Cymodocea nodosa (Ucria) Aschers. and Posidonia oceanica (L.) Delile and in Macroalgae of the Gulf of Antikyra (Greece) , 1993 .

[5]  D. Hutchins,et al.  Interaction of iron and major nutrients controls phytoplankton growth and species composition in the tropical North Pacific Ocean , 1993 .

[6]  O. Takimura,et al.  Marine algae excrete large molecular weight compounds keeping iron dissolved , 1993 .

[7]  C. Yarish,et al.  Patterns of metal accumulation in Laminaria longicruris from Long Island Sound (Connecticut) , 1992, Archives of environmental contamination and toxicology.

[8]  P. Basson,et al.  Elemental composition of some marine algae from the Bahrain coastline (Arabian Gulf) , 1992 .

[9]  M. Greger,et al.  Aluminium effects on Scenedesmus obtusiusculus with different phosphorus status. I. Mineral uptake , 1992 .

[10]  P. Miramand,et al.  Heavy metal concentrations in two biological indicators (Patella vulgata and Fucus serratus) collected near the French nuclear fuel reprocessing plant of La Hague , 1992 .

[11]  F. Morel,et al.  Limitation of productivity by trace metals in the sea , 1991 .

[12]  D. Hutchins,et al.  Interactive influences of bioactive trace metals on biological production in oceanic waters , 1991 .

[13]  Y. Ting,et al.  Uptake of cadmium and zinc by the alga Chlorella vulgaris: II. Multi‐ion situation , 1991, Biotechnology and bioengineering.

[14]  K. Ådjers,et al.  Fucus vesiculosus as an indicator of heavy metal availability in a fish farm recipient in the northern Baltic Sea , 1990 .

[15]  A. Marcomini,et al.  Macroalgae and phytoplankton standing crops in the central Venice lagoon: Primary production and nutrient balance , 1989 .

[16]  B. Volesky,et al.  Accumulation of cobalt by marine alga , 1989, Biotechnology and bioengineering.

[17]  D. Degobbis,et al.  The relation of nutrient regeneration in the sediments of the northern adriatic to eutrophication, with special reference to the lagoon of Venice , 1986 .

[18]  G. Harrison,et al.  Effects of pH Changes on Zinc Uptake by Chlamydomonas variabilis Grown in Batch Culture , 1986 .

[19]  P. Campbel,et al.  Acidification and Toxicity of Metals to Aquatic Biota , 1985 .

[20]  C. Sorentino Copper resistance in Hormidium fluitans (Gay) Heering (Ulotrichaceae, Chlorophyceae) , 1985 .

[21]  D. L. Rice A Simple mass transport model for metal uptake by marine macroalgae growing at different rates , 1984 .

[22]  C. Reynolds,et al.  Light-induced reduction of natural iron(III) oxide and its relevance to phytoplankton , 1984, Nature.

[23]  U. Seeliger,et al.  Field and experimental evaluation of Enteromorpha sp. As a quali-quantitative monitoring organism for copper and mercury in estuaries , 1982 .

[24]  F. Morel,et al.  The influence of aqueous iron chemistry on the uptake of iron by the coastal diatom Thalassiosira weissflogii1 , 1982 .

[25]  B. Lapointe,et al.  Experimental outdoor studies with ulva fasciata delile. II. Trace metal chemistry , 1981 .

[26]  I. Eide,et al.  Long-term uptake and release of heavy metals by Ascophyllum nodosum (L.) le jol. (phaeophyceae) in situ , 1980 .

[27]  A. Fielding,et al.  Mechanisms of copper tolerance in the marine fouling alga Ectocarpus siliculosus — Evidence for an exclusion mechanism , 1979 .

[28]  F. Morel,et al.  Release of weak and strong copper-complexing agents by algae1 , 1979 .

[29]  E. Percival The polysaccharides of green, red and brown seaweeds: Their basic structure, biosynthesis and function , 1979 .

[30]  I. Eide,et al.  Exchange of heavy metals in Ascophyllum nodosum (L.) le jol. in situ by means of transplanting experiments , 1978 .

[31]  H. Seip,et al.  A preliminary study of the use of benthic algae as biological indicators of heavy metal pollution in Sørfjorden, Norway , 1978 .

[32]  P. Foster Copper exclusion as a mechanism of heavy metal tolerance in a green alga , 1977, Nature.

[33]  D. Phillips The use of biological indicator organisms to monitor trace metal pollution in marine and estuarine environments—a review , 1977 .

[34]  G. N. Saenko,et al.  Concentration of polyvalent metals by seaweeds in Vostok Bay, Sea of Japan , 1976 .

[35]  A. Haug,et al.  Uptake of Zinc and Strontium by Brown Algae , 1975 .

[36]  G. Bryan The Absorption of Zinc and Other Metals by the Brown Seaweed Laminaria Digitata , 1969, Journal of the Marine Biological Association of the United Kingdom.

[37]  J. Gutknecht ZN65 UPTAKE BY BENTHIC MARINE ALGAE1 , 1963 .

[38]  S. Haritonidis,et al.  Bioaccumulation of Metals by Rhodophyta Species at Antikyra Gulf (Greece) Near an Aluminium Factory , 1994 .

[39]  K. Bird,et al.  Heavy Metal Accumulation by Carrageenan and Agar Producing Algae , 1994 .

[40]  K. C. Güven,et al.  Survey of Metal Contents of Bosphorus Algae, Zostera marina and Sediments , 1993 .

[41]  A. Carballeira,et al.  Heavy-metal accumulation by Fucus ceranoides in a small estuary in north-west Spain , 1993 .

[42]  Y. Zhao,et al.  Factors affecting the uptake of aqueous metal ions by dried seaweed biomass , 1992 .

[43]  E. Cevher,et al.  Metal Uptake by Black Sea Algae , 1992 .

[44]  M. Holmes,et al.  The involvement of epiphytic bacteria in zinc concentration by the red alga Gracilaria sordida , 1991 .

[45]  I. Munda,et al.  Trace Metal Content in Some Seaweeds from the Northern Adriatic , 1991 .

[46]  M. Pedersen,et al.  Studies on metal content in the brown seaweed, Fucus vesiculosus, from the Archipelago of Stockholm. , 1988, Environmental pollution.

[47]  S. Fitzwater,et al.  Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic , 1988, Nature.

[48]  I. Munda Differences in Heavy Metal Accumulation between Vegetative Parts of the Thalli and Receptacles in Fucus spiralis L. , 1986 .

[49]  I. Munda,et al.  Growth Response of Fucus vesiculosus to Heavy Metals, Singly and in Dual Combinations, as Related to Accumulation , 1986 .

[50]  D. Phillips,et al.  Use of bio-indicators in monitoring conservative contaminants: Programme design imperatives , 1986 .

[51]  A. Voulgaropoulos,et al.  Seasonal bioaccumulation of iron, cobalt and copper in marine algae from Thermaikos Gulf of the Northern Aegean Sea, Greece , 1986 .

[52]  B. Pavoni,et al.  Heavy metals in sediments of the Venice Lagoon , 1984 .

[53]  I. Munda Salinity Dependent Accumulation of Zn, Co and Mn in Scytosiphon lomentaria (Lyngb.) Link and Enteromorpha intestinalis (L.) Link from the Adriatic Sea , 1984 .

[54]  S. Ramamoorthy,et al.  Heavy Metals in Natural Waters , 1984 .

[55]  S. Luoma Bioavailability of trace metals to aquatic organisms--a review. , 1983, The Science of the total environment.

[56]  P. J. Peterson,et al.  Other Trace Metals , 1981 .

[57]  I. Munda Temperature Dependence of Zinc Uptake in Fucus virsoides (Don.) J. Ag. and Enteromorpha prolifera (O. F. Müll.) J. Ag. from the Adriatic Sea , 1979 .

[58]  N. Bhosle,et al.  Metal Concentration in Some Seaweeds of Goa (India) , 1978 .

[59]  P. Foster Concentrations and concentration factors of heavy metals in brown algae , 1976 .

[60]  Bertil Hägerhäll Marine Botanical-hydrographical Trace Element Studies in the Öresund Area , 1973 .