High mobility in a van der Waals layered antiferromagnetic metal

We introduce a van der Waals material that exhibits a very high electronic mobility and antiferromagnetism and can be exfoliated. Van der Waals (vdW) materials with magnetic order have been heavily pursued for fundamental physics as well as for device design. Despite the rapid advances, so far, they are mainly insulating or semiconducting, and none of them has a high electronic mobility—a property that is rare in layered vdW materials in general. The realization of a high-mobility vdW material that also exhibits magnetic order would open the possibility for novel magnetic twistronic or spintronic devices. Here, we report very high carrier mobility in the layered vdW antiferromagnet GdTe3. The electron mobility is beyond 60,000 cm2 V−1 s−1, which is the highest among all known layered magnetic materials, to the best of our knowledge. Among all known vdW materials, the mobility of bulk GdTe3 is comparable to that of black phosphorus. By mechanical exfoliation, we further demonstrate that GdTe3 can be exfoliated to ultrathin flakes of three monolayers.

[1]  S. Haigh,et al.  Hall micromagnetometry of two-dimensional ferromagnets , 2020 .

[2]  Xiaodong Xu,et al.  Atomically Thin CrCl3: An In-Plane Layered Antiferromagnetic Insulator. , 2019, Nano letters.

[3]  Kai Sun,et al.  Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides , 2019, Proceedings of the National Academy of Sciences.

[4]  Efthimios Kaxiras,et al.  Author Correction: Enhancement of interlayer exchange in an ultrathin two-dimensional magnet , 2019, Nature Physics.

[5]  S. Haigh,et al.  Micromagnetometry of two-dimensional ferromagnets , 2019, Nature Electronics.

[6]  S. Haigh,et al.  Hall micromagnetometry of individual two-dimensional ferromagnets , 2019 .

[7]  Rong Yang,et al.  2D proximate quantum spin liquid state in atomic-thin α-RuCl3 , 2018, 2D Materials.

[8]  D. Mandrus,et al.  Magnetism in two-dimensional van der Waals materials , 2018, Nature.

[9]  L. Schoop,et al.  Topological Semimetals in Square-Net Materials , 2018, Annual Review of Materials Research.

[10]  H. Woodrow,et al.  : A Review of the , 2018 .

[11]  Hyun Ho Kim,et al.  One Million Percent Tunnel Magnetoresistance in a Magnetic van der Waals Heterostructure. , 2018, Nano letters.

[12]  Wang Yao,et al.  Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2 , 2018, Nature Materials.

[13]  K. Novoselov,et al.  Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3 , 2018, Nature Electronics.

[14]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[15]  Takashi Taniguchi,et al.  Unconventional superconductivity in magic-angle graphene superlattices , 2018, Nature.

[16]  Michael A. McGuire,et al.  Electrical control of 2D magnetism in bilayer CrI3 , 2018, Nature Nanotechnology.

[17]  Jie Shan,et al.  Controlling magnetism in 2D CrI3 by electrostatic doping , 2018, Nature Nanotechnology.

[18]  Xiaodong Xu,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[19]  T. Taniguchi,et al.  Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling , 2018, Science.

[20]  Takashi Taniguchi,et al.  Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3 , 2018, Nature Communications.

[21]  H. Ohno,et al.  Spintronics based random access memory: a review , 2017 .

[22]  H. Lei,et al.  Massive fermions with low mobility in antiferromagnet orthorhombic CuMnAs single crystals , 2017, 1709.03394.

[23]  D. Mandrus,et al.  Possible structural transformation and enhanced magnetic fluctuations in exfoliated α-RuCl3 , 2017, Journal of Physics and Chemistry of Solids.

[24]  T. Xia,et al.  Quantum Oscillations and Coherent Interlayer Transport in a New Topological Dirac Semimetal Candidate: YbMnSb$_2$ , 2017, 1708.03913.

[25]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[26]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[27]  D. Graf,et al.  Magnetotransport study of Dirac fermions in YbMnBi2 antiferromagnet , 2016 .

[28]  D. Graf,et al.  Interlayer electronic transport in CaMnBi2 antiferromagnet , 2016, 1609.04003.

[29]  Jun Zhang,et al.  Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals , 2016 .

[30]  J. Ryoo,et al.  Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.

[31]  D. Graf,et al.  Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2 , 2016, Scientific Reports.

[32]  Z. Mao,et al.  Nearly massless Dirac fermions and strong Zeeman splitting in the nodal-line semimetal ZrSiS probed by de Haas–van Alphen quantum oscillations , 2016, 1604.01567.

[33]  B. Lotsch,et al.  Magnetic Properties of Restacked 2D Spin 1/2 honeycomb RuCl3 Nanosheets. , 2016, Nano letters.

[34]  Q. Gibson,et al.  The chiral anomaly and thermopower of Weyl fermions in the half-Heusler GdPtBi. , 2016, Nature materials.

[35]  B. Satpati,et al.  Large nonsaturating magnetoresistance and signature of nondegenerate Dirac nodes in ZrSiS , 2016, Proceedings of the National Academy of Sciences.

[36]  Yuichi Yamasaki,et al.  Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions , 2016, Science Advances.

[37]  B. Lotsch,et al.  Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS , 2015, Nature Communications.

[38]  D. Graf,et al.  A magnetic topological semimetal Sr1-yMn1-zSb2 (y, z < 0.1). , 2015, Nature materials.

[39]  Y. Maeno,et al.  Data underpinning : Quantum oscillations and magnetic reconstruction in the delafossite PdCrO2 , 2015, 1504.08104.

[40]  L. Li,et al.  Quantum Hall effect in black phosphorus two-dimensional electron system. , 2015, Nature nanotechnology.

[41]  J. Chu,et al.  Pressure dependence of the charge-density-wave and superconducting states in GdTe 3 , TbTe 3 , and DyTe 3 , 2015, 1504.07190.

[42]  P. Grigoriev,et al.  Slow Oscillations of In-plane Magnetoresistance in Strongly Anisotropic Quasi-Two-Dimensional Rare-Earth Tritellurides , 2015, 1504.06064.

[43]  Yingying Wu,et al.  High-quality sandwiched black phosphorus heterostructure and its quantum oscillations , 2014, Nature Communications.

[44]  Q. Gibson,et al.  Large, non-saturating magnetoresistance in WTe2 , 2014, Nature.

[45]  B. Sales,et al.  Effect of Eu magnetism on the electronic properties of the candidate Dirac material EuMnBi 2 , 2014, 1407.6203.

[46]  Q. Gibson,et al.  Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2. , 2014, Nature materials.

[47]  Geunsik Lee,et al.  Anisotropic Dirac Fermions in the Bi Square Net of Srmnbi (2) , 2013 .

[48]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[49]  Y. Maeno,et al.  Quantum oscillations and high carrier mobility in the delafossite PdCoO(2). , 2012, Physical review letters.

[50]  Y. Kim,et al.  Anisotropic Dirac fermions in a Bi square net of SrMnBi2. , 2011, Physical review letters.

[51]  F. Guinea,et al.  Dirac cones reshaped by interaction effects in suspended graphene (vol 7, pg 701, 2011) , 2011, 1104.1396.

[52]  P. McMahon,et al.  On the origin of non-monotonic doping dependence of the in-plane resistivity anisotropy in Ba(Fe$_{1-x}T_x$)$_2$As$_2$, $T$ = Co, Ni and Cu , 2011, 1103.4535.

[53]  M. Kanatzidis,et al.  Scanning tunneling microscopy study of the CeTe3 charge density wave , 2008, 0808.2638.

[54]  Klaus Kern,et al.  Atomic hole doping of graphene. , 2008, Nano letters.

[55]  B. Powell,et al.  A unified explanation of the Kadowaki–Woods ratio in strongly correlated metals , 2008, 0805.4275.

[56]  Astronomy,et al.  De Haas-van Alphen oscillations in the charge-density wave compound lanthanum tritelluride (LaTe3) , 2008, 0805.0661.

[57]  J. Chu,et al.  Magnetic properties of the charge density wave compounds RTe3, R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er & Tm , 2008, 0805.0175.

[58]  Xiaoping Zhou,et al.  Angle-resolved photoemission study of the evolution of band structure and charge density wave properties in RTe 3 ( R=Y , La, Ce, Sm, Gd, Tb, and Dy) , 2008, 0801.2672.

[59]  A. Kapitulnik,et al.  STM studies of TbTe3: evidence for a fully incommensurate charge density wave. , 2007, Physical review letters.

[60]  M. Toney,et al.  Effect of Chemical Pressure on the Charge Density Wave Transition in Rare-earth Tritellurides $R$Te$_3$ , 2006, cond-mat/0610319.

[61]  M. Kanatzidis,et al.  Divergence in the behavior of the charge density wave in RETe3 (RE = rare-earth element) with temperature and RE element. , 2006, Journal of the American Chemical Society.

[62]  T. Giamarchi,et al.  Chemical pressure and hidden one-dimensional behavior in rare earth tri-telluride , 2006, cond-mat/0606451.

[63]  N. Ru Charge density wave formation in rare-earth tritellurides , 2005 .

[64]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[65]  Z. Hussain,et al.  Fermi surface reconstruction in the CDW state of CeTe3 observed by photoemission. , 2004, Physical review letters.

[66]  Zhi-Xun Shen,et al.  Angle-resolved photoemission studies of the cuprate superconductors , 2002, cond-mat/0208504.

[67]  Lee,et al.  Chemical pressure and charge-density waves in rare-earth tritellurides. , 1995, Physical review. B, Condensed matter.

[68]  Shoichi Endo,et al.  Electrical Properties of Black Phosphorus Single Crystals , 1983 .

[69]  P. McMahon,et al.  Possible origin of the nonmonotonic doping dependence of the in-plane resistivity anisotropy of Ba(Fe_{1−x}T_{x})_{2}As_{2} (T=Co, Ni and Cu) , 2014 .

[70]  W. H. Lowrey,et al.  Galvanomagnetic effects in graphite—I: Low field data and the densities of free carriers , 1978 .

[71]  W. Pratt,et al.  High-Precision, Ultralow-Temperature Resistivity Measurements on Bismuth , 1977 .