Approximation of the ruin probability using the scaled Laplace transform inversion

The problem of recovering the ruin probability in the classical risk model based on the scaled Laplace transform inversion is studied. It is shown how to overcome the problem of evaluating the ruin probability at large values of an initial surplus process. Comparisons of proposed approximations with the ones based on the Laplace transform inversions using a fixed Talbot algorithm as well as on the ones using the Trefethen-Weideman-Schmelzer and maximum entropy methods are presented via a simulation study.

[1]  Didier Chauveau,et al.  Regularized Inversion of Noisy Laplace Transforms , 1994 .

[2]  David C. M. Dickson,et al.  Insurance risk and ruin , 2005 .

[3]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[4]  Henryk Gzyl,et al.  Determination of the probability of ultimate ruin by maximum entropy applied to fractional moments , 2013 .

[5]  Florin Avram,et al.  On moments based Padé approximations of ruin probabilities , 2011, J. Comput. Appl. Math..

[6]  L. Trefethen,et al.  Talbot quadratures and rational approximations , 2006 .

[7]  Robert M. Mnatsakanov,et al.  Hausdorff moment problem: Reconstruction of probability density functions , 2008 .

[8]  J. Abate,et al.  Multi‐precision Laplace transform inversion , 2004 .

[9]  Florin Avram,et al.  On the efficient evaluation of ruin probabilities for completely monotone claim distributions , 2010, J. Comput. Appl. Math..

[10]  Aldo Tagliani Hausdorff moment problem and fractional moments: A simplified procedure , 2011, Appl. Math. Comput..

[11]  Robert M. Mnatsakanov,et al.  A note on recovering the distributions from exponential moments , 2013, Appl. Math. Comput..

[12]  Yasutaka Shimizu,et al.  Estimation of the expected discounted penalty function for Lévy insurance risks , 2011 .

[13]  Robert M. Mnatsakanov,et al.  Nonparametric estimation of ruin probabilities given a random sample of claims , 2008 .

[14]  G. Talenti Recovering a function from a finite number of moments , 1987 .

[15]  Robert M. Mnatsakanov,et al.  Moment-recovered approximations of multivariate distributions: The Laplace transform inversion , 2011 .

[16]  Pham Hoang Quan,et al.  A Hausdorff‐like moment problem and the inversion of the Laplace transform , 2006 .

[17]  Hailiang Yang,et al.  On a nonparametric estimator for ruin probability in the classical risk model , 2014 .