On the generalized Feng-Rao numbers of numerical semigroups generated by intervals
暂无分享,去创建一个
Manuel Delgado | Pedro A. García-Sánchez | José Ignacio Farrán | David Llena | J. I. Farrán | P. García-Sánchez | D. Llena | M. Delgado
[1] Ruud Pellikaan,et al. The minimum distance of codes in an array coming from telescopic semigroups , 1995, IEEE Trans. Inf. Theory.
[2] Angela I. Barbero,et al. The Weight Hierarchy of Hermitian Codes , 2000, SIAM J. Discret. Math..
[3] J. I. Farrán,et al. On the Feng-Rao numbers , 2010 .
[4] Carlos Munuera,et al. On the parameters of algebraic-geometry codes related to Arf semigroups , 1999, IEEE Trans. Inf. Theory.
[5] Roland Häggkvist,et al. On numerical semigroups , 1986 .
[6] S. Chapman,et al. The catenary and tame degree of numerical monoids , 2009 .
[7] S. Chapman,et al. THE CATENARY AND TAME DEGREE OF NUMERICAL SEMIGROUPS , 2007 .
[8] Ruud Pellikaan,et al. Generalized Hamming Weights of q-ary Reed-Muller Codes , 1998, IEEE Trans. Inf. Theory.
[9] José Ignacio Farrán,et al. Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models , 1999, ArXiv.
[10] Torleiv Kløve,et al. The weight distribution of irreducible cyclic codes with block lengths n1((q1-1)/N) , 1977, Discret. Math..
[11] Victor K.-W. Wei,et al. Generalized Hamming weights for linear codes , 1991, IEEE Trans. Inf. Theory.
[12] I. G. Núñez,et al. Generalized Hamming Weights for Linear Codes , 2001 .
[13] Johan P. Hansen,et al. Algebraic Geometry Codes , 2005 .
[14] Carlos Munuera,et al. Goppa-like Bounds for the Generalized Feng-Rao Distances , 2003, Discret. Appl. Math..
[15] T. R. N. Rao,et al. Decoding algebraic-geometric codes up to the designed minimum distance , 1993, IEEE Trans. Inf. Theory.
[16] Ian F. Blake,et al. Algebraic-Geometry Codes , 1998, IEEE Trans. Inf. Theory.