On the generalized Feng-Rao numbers of numerical semigroups generated by intervals

We give some general results concerning the computation of the generalized Feng-Rao numbers of numerical semigroups. In the case of a numerical semigroup generated by an interval, a formula for the $r^{th}$ Feng-Rao number is obtained.

[1]  Ruud Pellikaan,et al.  The minimum distance of codes in an array coming from telescopic semigroups , 1995, IEEE Trans. Inf. Theory.

[2]  Angela I. Barbero,et al.  The Weight Hierarchy of Hermitian Codes , 2000, SIAM J. Discret. Math..

[3]  J. I. Farrán,et al.  On the Feng-Rao numbers , 2010 .

[4]  Carlos Munuera,et al.  On the parameters of algebraic-geometry codes related to Arf semigroups , 1999, IEEE Trans. Inf. Theory.

[5]  Roland Häggkvist,et al.  On numerical semigroups , 1986 .

[6]  S. Chapman,et al.  The catenary and tame degree of numerical monoids , 2009 .

[7]  S. Chapman,et al.  THE CATENARY AND TAME DEGREE OF NUMERICAL SEMIGROUPS , 2007 .

[8]  Ruud Pellikaan,et al.  Generalized Hamming Weights of q-ary Reed-Muller Codes , 1998, IEEE Trans. Inf. Theory.

[9]  José Ignacio Farrán,et al.  Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models , 1999, ArXiv.

[10]  Torleiv Kløve,et al.  The weight distribution of irreducible cyclic codes with block lengths n1((q1-1)/N) , 1977, Discret. Math..

[11]  Victor K.-W. Wei,et al.  Generalized Hamming weights for linear codes , 1991, IEEE Trans. Inf. Theory.

[12]  I. G. Núñez,et al.  Generalized Hamming Weights for Linear Codes , 2001 .

[13]  Johan P. Hansen,et al.  Algebraic Geometry Codes , 2005 .

[14]  Carlos Munuera,et al.  Goppa-like Bounds for the Generalized Feng-Rao Distances , 2003, Discret. Appl. Math..

[15]  T. R. N. Rao,et al.  Decoding algebraic-geometric codes up to the designed minimum distance , 1993, IEEE Trans. Inf. Theory.

[16]  Ian F. Blake,et al.  Algebraic-Geometry Codes , 1998, IEEE Trans. Inf. Theory.