Detector description and performance for the first coincidence observations between LIGO and GEO

For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data. r 2003 Elsevier B.V. All rights reserved. PACS: 04.89.Nn; 07.60.Ly; 95.45.+i; 95.55.Ym

[1]  Peter R. Saulson Fundamentals of Interferometric Gravitational Wave Detectors , 1994 .

[2]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[3]  M. M. Casey,et al.  Computer monitoring and control of the GEO 600 gravitational wave detector , 2000 .

[4]  M. M. Casey,et al.  A report on the status of the GEO 600 gravitational wave detector , 2003 .

[5]  V. Quetschke,et al.  The GEO 600 laser system , 2002 .

[6]  Kenneth A. Strain,et al.  GEO 600 triple pendulum suspension system: Seismic isolation and control , 2000 .

[7]  Yuri Levin Internal thermal noise in the LIGO test masses: A direct approach , 1998 .

[8]  Benno Willke,et al.  EXPERIMENTAL DEMONSTRATION OF A SUSPENDED DUAL RECYCLING INTERFEROMETER FOR GRAVITATIONAL WAVE DETECTION , 1998 .

[9]  S. Klimenko,et al.  End to End Simulation Program for Gravitational-Wave Detectors , 2000 .

[10]  Andreas Tünnermann,et al.  GEO 600. A 600 m Laser Interferometric Gravitational Wave Antenna , 1994 .

[11]  B. Bochner Modelling the performance of interferometric gravitational-wave detectors with realistically imperfect optics , 1998 .

[12]  C. Broeck,et al.  Laser Interferometer Gravitational-wave Observatory , 2012 .

[13]  N. Mavalvala,et al.  Readout and control of a power-recycled interferometric gravitational-wave antenna. , 2001, Applied optics.

[14]  W. Kells,et al.  Lock acquisition of a gravitational-wave interferometer. , 2002, Optics letters.

[15]  A. Lazzarini,et al.  Precision alignment of the LIGO 4 km arms using the dual-frequency differential global positioning system , 2001 .

[16]  Andrew G. Glen,et al.  APPL , 2001 .

[17]  M. M. Casey,et al.  The automatic alignment system of GEO 600 , 2002 .

[18]  L. Sievers,et al.  A passive vibration isolation stack for LIGO: Design, modeling, and testing , 1996 .

[19]  Sheila Rowan,et al.  Mechanical losses associated with the technique of hydroxide-catalysis bonding of fused silica , 1998 .

[20]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[21]  H. Grote,et al.  Calibration of GEO 600 for the S1 science run , 2003 .

[22]  J. Camp,et al.  Optical contamination screening of materials with a high-finesse Fabry-Perot cavity resonated continuously at 1.06- microm wavelength in vacuum. , 1999, Applied optics.

[23]  J. Heefner,et al.  THE LIGO SUSPENDED OPTIC DIGITAL CONTROL SYSTEM , 2001 .

[24]  Martin M. Fejer,et al.  Analysis of LIGO data for gravitational waves from binary neutron stars , 2004 .

[25]  Rowan,et al.  Very high Q measurements on a fused silica monolithic pendulum for use in enhanced gravity wave detectors , 2000, Physical review letters.

[26]  Carl Kesselman,et al.  GriPhyN and LIGO, building a virtual data Grid for gravitational wave scientists , 2002, Proceedings 11th IEEE International Symposium on High Performance Distributed Computing.

[27]  B. Barish,et al.  LIGO and the Detection of Gravitational Waves , 1999 .

[28]  D. Farrant,et al.  Fabrication and measurement of optics for the laser interferometer gravitational wave observatory. , 1999, Applied optics.

[29]  Masaki Ando,et al.  Current status of TAMA , 2002 .

[30]  Peter Fritschel,et al.  Alignment of an interferometric gravitational wave detector. , 1998, Applied optics.

[31]  A. Lazzarini,et al.  The LIGO Data Analysis System , 1976 .

[32]  D. Sigg,et al.  DETECTOR CHARACTERIZATION AND GLOBAL DIAGNOSTICS SYSTEM OF THE LASER INTERFEROMETER GRAVITATIONAL-WAVE OBSERVATORY (LIGO) , 2002 .

[33]  E. al.,et al.  Analysis of first LIGO science data for stochastic gravitational waves , 2003, gr-qc/0312088.

[34]  B. J. Meers,et al.  Recycling in laser-interferometric gravitational-wave detectors. , 1988, Physical review. D, Particles and fields.

[35]  M. Regehr,et al.  Demonstration of a power-recycled Michelson interferometer with Fabry-Perot arms by frontal modulation. , 1995, Optics letters.

[36]  Barry C. Barish,et al.  The Laser Interferometer Gravitational-Wave Observatory LIGO , 2000 .

[37]  E. al.,et al.  Setting upper limits on the strength of periodic gravitational waves using the first science data from the GEO600 and LIGO detectors , 2003, gr-qc/0308050.

[38]  R. Abbott,et al.  Feedforward reduction of the microseism disturbance in a long-baseline interferometric gravitational-wave detector , 2002 .

[39]  Grid-based simulation program for gravitational wave interferometers with realistically imperfect optics , 2003, astro-ph/0311413.

[40]  LIGO data analysis , 2003 .

[41]  Rainer Weiss,et al.  Optics Development for LIGO , 1997 .

[42]  Benno Willke,et al.  Mode-cleaning and injection optics of the gravitational-wave detector GEO600 , 2003 .

[43]  A. Freise,et al.  Status of VIRGO , 2004 .