Changes in substrate availability in Escherichia coli lead to rapid metabolite, flux and growth rate responses.

[1]  F. Delvigne,et al.  Comparison of the transient responses of Escherichia coli to a glucose pulse of various intensities , 2012, Applied Microbiology and Biotechnology.

[2]  G. Sanguinetti,et al.  Reprogramming of Escherichia coli K-12 Metabolism during the Initial Phase of Transition from an Anaerobic to a Micro-Aerobic Environment , 2011, PloS one.

[3]  Hilal Taymaz-Nikerel,et al.  Escherichia coli responds with a rapid and large change in growth rate upon a shift from glucose-limited to glucose-excess conditions. , 2011, Metabolic engineering.

[4]  J. Heijnen,et al.  An in vivo data-driven framework for classification and quantification of enzyme kinetics and determination of apparent thermodynamic data. , 2011, Metabolic engineering.

[5]  Amin Espah Borujeni,et al.  Genome‐derived minimal metabolic models for Escherichia coli MG1655 with estimated in vivo respiratory ATP stoichiometry , 2010, Biotechnology and bioengineering.

[6]  Jo Maertens,et al.  Catching prompt metabolite dynamics in Escherichia coli with the BioScope at oxygen rich conditions. , 2010, Metabolic engineering.

[7]  U. Sauer,et al.  Systems biology of microbial metabolism. , 2010, Current opinion in microbiology.

[8]  Matthias Reuss,et al.  Prediction of kinetic parameters from DNA-binding site sequences for modeling global transcription dynamics in Escherichia coli. , 2010, Metabolic engineering.

[9]  Hyun Uk Kim,et al.  Data integration and analysis of biological networks. , 2010, Current opinion in biotechnology.

[10]  D. Weuster‐Botz,et al.  Rapid media transition: An experimental approach for steady state analysis of metabolic pathways , 2009, Biotechnology progress.

[11]  Hilal Taymaz-Nikerel,et al.  Development and application of a differential method for reliable metabolome analysis in Escherichia coli. , 2009, Analytical biochemistry.

[12]  M. Reuss,et al.  In vivo dynamics of glycolysis in Escherichia coli shows need for growth‐rate dependent metabolome analysis , 2008, Biotechnology progress.

[13]  Peter D. Karp,et al.  EcoCyc: A comprehensive view of Escherichia coli biology , 2008, Nucleic Acids Res..

[14]  Frederick R. Blattner,et al.  Transcription Profiling of the Stringent Response in Escherichia coli , 2007, Journal of bacteriology.

[15]  Erin M. Conlon,et al.  Rapid Changes in Gene Expression Dynamics in Response to Superoxide Reveal SoxRS-Dependent and Independent Transcriptional Networks , 2007, PloS one.

[16]  Pei Yee Ho,et al.  Multiple High-Throughput Analyses Monitor the Response of E. coli to Perturbations , 2007, Science.

[17]  U. Nasution A dynamic and steady state metabolome study of central metabolism and its relation with the penicillin biosynthesis pathway in Penicillium chrysogenum , 2007 .

[18]  Joseph J. Heijnen,et al.  A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics , 2006, BMC Bioinformatics.

[19]  Yue-qin Tang,et al.  Escherichia coli Transcriptome Dynamics during the Transition from Anaerobic to Aerobic Conditions* , 2006, Journal of Biological Chemistry.

[20]  J. Pronk,et al.  When transcriptome meets metabolome: fast cellular responses of yeast to sudden relief of glucose limitation , 2006, Molecular systems biology.

[21]  J. Heijnen,et al.  Short-Term Metabolome Dynamics and Carbon, Electron, and ATP Balances in Chemostat-Grown Saccharomyces cerevisiae CEN.PK 113-7D following a Glucose Pulse , 2006, Applied and Environmental Microbiology.

[22]  J. Heijnen,et al.  Changes in the metabolome of Saccharomyces cerevisiae associated with evolution in aerobic glucose-limited chemostats. , 2005, FEMS yeast research.

[23]  J. Heijnen,et al.  Quantitative analysis of the microbial metabolome by isotope dilution mass spectrometry using uniformly 13C-labeled cell extracts as internal standards. , 2005, Analytical biochemistry.

[24]  R. Carlson,et al.  Fundamental Escherichia coli biochemical pathways for biomass and energy production: creation of overall flux states , 2004, Biotechnology and bioengineering.

[25]  U. Sauer,et al.  A Novel Metabolic Cycle Catalyzes Glucose Oxidation and Anaplerosis in Hungry Escherichia coli* , 2003, Journal of Biological Chemistry.

[26]  J. Heijnen,et al.  Rapid sampling for analysis of in vivo kinetics using the BioScope: a system for continuous-pulse experiments. , 2002, Biotechnology and bioengineering.

[27]  C. Chassagnole,et al.  Dynamic modeling of the central carbon metabolism of Escherichia coli. , 2002, Biotechnology and bioengineering.

[28]  H. Lange,et al.  Analysis of glycolytic intermediates in Saccharomyces cerevisiae using anion exchange chromatography and electrospray ionization with tandem mass spectrometric detection , 2002 .

[29]  Oliver Fiehn,et al.  Combining Genomics, Metabolome Analysis, and Biochemical Modelling to Understand Metabolic Networks , 2001, Comparative and functional genomics.

[30]  H C Lim,et al.  Regulation of ribosome synthesis in Escherichia coli: Effects of temperature and dilution rate changes , 2000, Biotechnology and bioengineering.

[31]  D Weuster-Botz,et al.  Automated sampling device for monitoring intracellular metabolite dynamics. , 1999, Analytical biochemistry.

[32]  M. Reuss,et al.  In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae : I. Experimental observations. , 1997, Biotechnology and bioengineering.

[33]  J. Liao Modelling and analysis of metabolic pathways. , 1993, Current opinion in biotechnology.

[34]  R. A. Cook,et al.  Characterization of the specific pyruvate transport system in Escherichia coli K-12 , 1987, Journal of bacteriology.

[35]  H. Rosenberg,et al.  Succinate uptake and related proton movements in Escherichia coli K12. , 1975, The Biochemical journal.

[36]  P. Dennis,et al.  Macromolecular Composition During Steady-State Growth of Escherichia coli B/r , 1974, Journal of bacteriology.

[37]  D. Nierlich Regulation of Bacterial Growth , 1974, Science.

[38]  O. H. Lowry,et al.  The effect of carbon and nitrogen sources on the level of metabolic intermediates in Escherichia coli. , 1971, The Journal of biological chemistry.

[39]  A. L. Koch,et al.  In vivo assay of protein synthesizing capacity of Escherichia coli from slowly growing chemostat cultures. , 1971, Journal of molecular biology.

[40]  R. Mateles,et al.  Measurement of Unsteady State Growth Rates of Micro-Organisms , 1965, Nature.

[41]  I. E. Nikerel,et al.  Model reduction and a priori kinetic parameter identifiability analysis using metabolome time series for metabolic reaction networks with linlog kinetics. , 2009, Metabolic engineering.

[42]  R. Takors,et al.  Applying metabolic profiling techniques for stimulus-response experiments: chances and pitfalls. , 2005, Advances in biochemical engineering/biotechnology.

[43]  Keith Tyo,et al.  Metabolic engineering. , 1994, Current opinion in biotechnology.