Calcium looping sorbents for CO2 capture

Calcium looping (CaL) is a promising technology for the decarbonation of power generation and carbon-intensive (cement, lime and steel) industries. Although CaL has been extensively researched, some issues need to be addressed before deployment of this technology at commercial scale. One of the important challenges for CaL is decay of sorbent reactivity during capture/regeneration cycles. Numerous techniques have been explored to enhance natural sorbent performance, to create new synthetic sorbents, and to re-activate and re-use deactivated material. This review provides a critical analysis of natural and synthetic sorbents developed for use in CaL. Special attention is given to the suitability of modified materials for utilisation in fluidised-bed systems. Namely, besides requirements for a practical adsorption capacity, a mechanically strong material, resistant to attrition, is required for the fluidised bed CaL operating conditions. However, the main advantage of CaL is that it employs a widely available and inexpensive sorbent. Hence, a compromise must be made between improving the sorbent performance and increasing its cost, which means a relatively practical, scalable, and inexpensive method to enhance sorbent performance, should be found. This is often neglected when developing new materials focusing only on very high adsorption capacity.

[1]  Choong-Gon Lee,et al.  CO2 sorption and desorption efficiency of Ca2SiO4 , 2008 .

[2]  Vasilije Manovic,et al.  Reactivation and remaking of calcium aluminate pellets for CO2 capture , 2011 .

[3]  A. Purwanto,et al.  Flame Spray Pyrolysis , 2011 .

[4]  Robin W. Hughes,et al.  Ca-based sorbent looping combustion for CO2 capture in pilot-scale dual fluidized beds , 2008 .

[5]  M. Thring World Energy Outlook , 1977 .

[6]  Karl O. Albrecht,et al.  Development of a CaO-based CO2 sorbent with improved cyclic stability , 2008 .

[7]  Vasilije Manovic,et al.  CaO-Based Pellets with Oxygen Carriers and Catalysts , 2011 .

[8]  Vasilije Manovic,et al.  Effect of SO2 and steam on CO2 capture performance of biomass-templated calcium aluminate pellets. , 2016, Faraday discussions.

[9]  V. Manović,et al.  Screening of Binders for Pelletization of CaO-Based Sorbents for CO2 Capture† , 2009 .

[10]  J. R. Ommen,et al.  Synthesis of a nanosilica supported CO2 sorbent in a fluidized bed reactor , 2015 .

[11]  Robin W. Hughes,et al.  Attrition of Calcining Limestones in Circulating Fluidized-Bed Systems , 2007 .

[12]  S. George Atomic layer deposition: an overview. , 2010, Chemical reviews.

[13]  Borja Arias,et al.  Evaluation of CO2 Carrying Capacity of Reactivated CaO by Hydration , 2011 .

[14]  K. Yi,et al.  Properties of a Nano CaO/Al2O3 CO2 Sorbent , 2008 .

[15]  Jianguo Yu,et al.  Preparation of CaO–Al2O3 sorbent and CO2 capture performance at high temperature , 2013 .

[16]  P. Fennell,et al.  Regeneration of sintered limestone sorbents for the sequestration of CO2 from combustion and other systems , 2007 .

[17]  C. Zheng,et al.  Cyclic CO2 capture characteristics of a pellet derived from sol-gel CaO powder with Ca12Al14O33 support , 2015, Korean Journal of Chemical Engineering.

[18]  Robert H. Borgwardt,et al.  Sintering of nascent calcium oxide , 1989 .

[19]  V. Manović,et al.  High-temperature CO2 capture cycles for CaO-based pellets with kaolin-based binders , 2012 .

[20]  Fabio Montagnaro,et al.  Reactivation by water hydration of the CO2 capture capacity of a calcium looping sorbent , 2014 .

[21]  B. Hua,et al.  Energy Consumption Analysis of Air Separation Process for Oxy-Fuel Combustion System , 2014 .

[22]  Stephen A. Rackley,et al.  Carbon Capture and Storage , 2009 .

[23]  Borja Arias,et al.  Effect of sorbent hydration on the average activity of CaO in a Ca-looping system , 2010 .

[24]  E. J. Anthony,et al.  Pacification of FBC ash in a pressurized TGA , 2000 .

[25]  Vasilije Manovic,et al.  Influence of calcination conditions on carrying capacity of CaO-based sorbent in CO2 looping cycles , 2009 .

[26]  Abhoyjit S Bhown,et al.  Analysis and status of post-combustion carbon dioxide capture technologies. , 2011, Environmental science & technology.

[27]  Zimin Nie,et al.  MgAl2O4 Spinel-Stabilized Calcium Oxide Absorbents with Improved Durability for High-Temperature CO2 Capture , 2010 .

[28]  Vasilije Manovic,et al.  Parametric Study on the CO2 Capture Capacity of CaO-Based Sorbents in Looping Cycles , 2008 .

[29]  Chuguang Zheng,et al.  Manufacture of calcium-based sorbents for high temperature cyclic CO2 capture via a sol–gel process , 2013 .

[30]  E. Rubin,et al.  Sorbent Cost and Performance in CO2 Capture Systems , 2004 .

[31]  Lei Ge,et al.  Calcium looping for CO2 capture at a constant high temperature , 2014 .

[32]  Jose Manuel Valverde,et al.  A model on the CaO multicyclic conversion in the Ca-looping process , 2013 .

[33]  Jian Sun,et al.  Enhanced performance of extruded–spheronized carbide slag pellets for high temperature CO2 capture , 2016 .

[34]  Paul S. Fennell,et al.  Synthetic CaO-based sorbent for CO2 capture , 2011 .

[35]  양민선 IPCC(Intergovernmental Panel on climate Change) 외 , 2008 .

[36]  Changsui Zhao,et al.  Calcium-based sorbent doped with attapulgite for CO2 capture , 2013 .

[37]  Jinsheng Wang,et al.  The Hydration Behavior of Partially Sulfated Fluidized Bed Combustor Sorbent , 2005 .

[38]  Paul S. Fennell,et al.  Morphological Changes of Limestone Sorbent Particles during Carbonation/Calcination Looping Cycles in a Thermogravimetric Analyzer (TGA) and Reactivation with Steam , 2010 .

[39]  Moses O. Tadé,et al.  Systematic study of aqueous monoethanolamine (MEA)-based CO2 capture process: Techno-economic assessment of the MEA process and its improvements , 2016 .

[40]  Costas Tsouris,et al.  Separation of CO2 from Flue Gas: A Review , 2005 .

[41]  John F. Davidson,et al.  Comparison of Different Natural Sorbents for Removing CO2 from Combustion Gases, as Studied in a Bench-Scale Fluidized Bed , 2008 .

[42]  Dong Wang,et al.  Incorporating IGCC and CaO sorption-enhanced process for power generation with CO2 capture , 2012 .

[43]  J. Woods,et al.  Pacification of high calcic residues using carbon dioxide , 2000 .

[44]  J. C. Abanades,et al.  Cost structure of a postcombustion CO2 capture system using CaO. , 2007, Environmental science & technology.

[45]  Konstantinos M. Paraskevopoulos,et al.  The effects of procedural variables on the maximum capture efficiency of CO2 using a carbonation/calcination cycle of carbonate rocks , 2005 .

[46]  L. Fan,et al.  Carbonation−Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation from Flue Gas , 2002 .

[47]  Vasilije Manovic,et al.  Pelletized CaO-based sorbents treated with organic acids for enhanced CO2 capture in Ca-looping cycles , 2013 .

[48]  Changlei Qin,et al.  Performance of Extruded Particles from Calcium Hydroxide and Cement for CO2 Capture , 2012 .

[49]  Fabio Montagnaro,et al.  Fluidized bed calcium looping cycles for CO2 capture under oxy-firing calcination conditions: Part 2. Assessment of dolomite vs. limestone , 2013 .

[50]  P. Fennell,et al.  Mechanism of Particle Breakage during Reactivation of CaO-Based Sorbents for CO2 Capture , 2010 .

[51]  John R. Grace,et al.  The effect of CaO sintering on cyclic CO2 capture in energy systems , 2007 .

[52]  C. Hawthorne,et al.  Progress in Calcium Looping Post Combustion CO2 Capture: Successful Pilot Scale Demonstration☆ , 2013 .

[53]  Vasilije Manovic,et al.  Steam hydration of sorbents from a dual fluidized bed CO2 looping cycle reactor , 2008 .

[54]  Borja Arias,et al.  Post-combustion calcium looping process with a highly stable sorbent activity by recarbonation , 2012 .

[55]  Haibo Zhao,et al.  Tailor-Made Core-Shell CaO/TiO2-Al2O3 Architecture as a High-Capacity and Long-Life CO2 Sorbent. , 2015, Environmental science & technology.

[56]  Dawid P. Hanak,et al.  A review of developments in pilot-plant testing and modelling of calcium looping process for CO2 capture from power generation systems , 2015 .

[57]  A. Sánchez-Biezma,et al.  Demonstration of steady state CO2 capture in a 1.7 MWth Calcium looping pilot , 2013 .

[58]  John R. Grace,et al.  Long-Term Calcination/Carbonation Cycling and Thermal Pretreatment for CO2 Capture by Limestone and Dolomite , 2009 .

[59]  M. Broda,et al.  Sol–gel-derived, CaO-based, ZrO2-stabilized CO2 sorbents , 2014 .

[60]  Bo Feng,et al.  Calcium precursors for the production of CaO sorbents for multicycle CO2 capture. , 2010, Environmental science & technology.

[61]  Zimin Nie,et al.  Magnesia-stabilized calcium oxide absorbents with improved durability for high temperature CO{sub 2} capture , 2009 .

[62]  Minghou Xu,et al.  Structurally Improved, Core-in-Shell, CaO-Based Sorbent Pellets for CO2 Capture , 2015 .

[63]  Robin W. Hughes,et al.  Improved Long-Term Conversion of Limestone-Derived Sorbents for In Situ Capture of CO2 in a Fluidized Bed Combustor , 2004 .

[64]  Ying Zheng,et al.  Development and Performance of CaO/La2O3 Sorbents during Calcium Looping Cycles for CO2 Capture , 2010 .

[65]  Calin-Cristian Cormos,et al.  Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle , 2014 .

[66]  P. Fennell,et al.  of CaO-based Sorbents for CO2 Capture , 2012 .

[67]  Ming Zhao,et al.  A review of techno-economic models for the retrofitting of conventional pulverised-coal power plants for post-combustion capture (PCC) of CO2 , 2013 .

[68]  John R. Grace,et al.  Cyclic CO2 capture by limestone‐derived sorbent during prolonged calcination/carbonation cycling , 2008 .

[69]  M. Romano Modeling the carbonator of a Ca-looping process for CO2 capture from power plant flue gas , 2012 .

[70]  Chuguang Zheng,et al.  Preparation and Application of the Sol-Gel Combustion Synthesis-Made CaO/CaZrO3 Sorbent for Cyclic CO2 Capture Through the Severe Calcination Condition , 2014 .

[71]  Sbs Stephan Heil,et al.  In situ spectroscopic ellipsometry as a versatile tool for studying atomic layer deposition , 2009 .

[72]  Hallvard F. Svendsen,et al.  Corrosion and degradation in MEA based post-combustion CO2 capture , 2016 .

[73]  J. Blamey,et al.  End use of lime-based sorbents from calcium looping systems , 2015 .

[74]  Sotiris E. Pratsinis,et al.  Flame-Made Durable Doped-CaO Nanosorbents for CO2 Capture , 2009 .

[75]  Edward S. Rubin,et al.  Calcium Looping Cycle for CO2 Capture: Performance, Cost And Feasibility Analysis☆ , 2014 .

[76]  Jose Manuel Valverde,et al.  Calcium-looping for post-combustion CO2 capture. On the adverse effect of sorbent regeneration under CO2 , 2014 .

[77]  A. Sánchez-Biezma,et al.  Oxyfuel carbonation/calcination cycle for low cost CO2 capture in existing power plants , 2008 .

[78]  Alexei G. Sankovski,et al.  Special report on emissions scenarios : a special report of Working group III of the Intergovernmental Panel on Climate Change , 2000 .

[79]  Y. Q. Zhu,et al.  Behavior of CaTiO 3 / Nano-CaO as a CO 2 Reactive Adsorbent , 2010 .

[80]  Bo Feng,et al.  Synthesis of sintering-resistant sorbents for CO2 capture. , 2010, Environmental science & technology.

[81]  A. I. Lysikov,et al.  Change of CO2 Carrying Capacity of CaO in Isothermal Recarbonation−Decomposition Cycles , 2007 .

[82]  P. Salatino,et al.  LIMESTONE ATTRITION DURING FLUIDIZED BED CALCIUM LOOPING CYCLES FOR CO 2 CAPTURE : THE EFFECT OF SO 2 , 2012 .

[83]  John F. Davidson,et al.  The Effects of Repeated Cycles of Calcination and Carbonation on a Variety of Different Limestones, as Measured in a Hot Fluidized Bed of Sand , 2007 .

[84]  J. N. Kim,et al.  Properties of Ca-Base CO2 Sorbent Using Ca(OH)2 as Precursor , 2007 .

[85]  J. Carlos Abanades,et al.  Calcium looping for CO2 capture: sorbent enhancement through doping , 2011 .

[86]  Haibo Zhao,et al.  Batch fluidized bed test of SATS-derived CaO/TiO2–Al2O3 sorbent for calcium looping , 2016 .

[87]  Yingjie Li,et al.  Cyclic CO2 Capture Behavior of Limestone Modified with Pyroligneous Acid (PA) during Calcium Looping Cycles , 2011 .

[88]  J. Valverde,et al.  CO2 multicyclic capture of pretreated/doped CaO in the Ca-looping process. Theory and experiments. , 2013, Physical chemistry chemical physics : PCCP.

[89]  Nasser Ashgriz,et al.  Handbook of atomization and sprays : theory and applications , 2011 .

[90]  Yingjie Li,et al.  CO2 capture performance of calcium-based sorbent doped with manganese salts during calcium looping cycle , 2012 .

[91]  Christina S. Martavaltzi,et al.  Development of a novel-synthesized Ca-based CO2 sorbent for multicycle operation: Parametric study of sorption , 2014 .

[92]  Calin-Cristian Cormos,et al.  Assessment of chemical absorption/adsorption for post-combustion CO2 capture from Natural Gas Combined Cycle (NGCC) power plants , 2015 .

[93]  Yingjie Li,et al.  Studies on CO2 uptake by CaO/Ca3Al2O6 sorbent in calcium looping cycles , 2015, Journal of Thermal Analysis and Calorimetry.

[94]  Gary T. Rochelle,et al.  Oxidative Degradation of Monoethanolamine , 2002 .

[95]  J. C. Abanades,et al.  Modelling of a fluidized bed carbonator reactor to capture CO2 from a combustion flue gas , 2009 .

[96]  Chechet Biliyok,et al.  Modelling and comparison of calcium looping and chemical solvent scrubbing retrofits for CO2 capture from coal-fired power plant , 2015 .

[97]  Paul S. Fennell,et al.  The calcium looping cycle for CO2 capture from power generation, cement manufacture and hydrogen production , 2011 .

[98]  S. F. Wu,et al.  Behavior of CaTiO3/Nano-CaO as a CO2 Reactive Adsorbent , 2010 .

[99]  P. Smirniotis,et al.  High-Temperature Sorbents for CO2 Made of Alkali Metals Doped on CaO Supports , 2004 .

[100]  R. Hughes,et al.  Hydration and Pelletization of CaCO 3 -Derived Sorbents for In-Situ CO 2 Capture , 2009 .

[101]  Changsui Zhao,et al.  Cyclic calcination/carbonation looping of dolomite modified with acetic acid for CO2 capture , 2008 .

[102]  John R. Grace,et al.  Investigation of Attempts to Improve Cyclic CO2 Capture by Sorbent Hydration and Modification , 2008 .

[103]  R. Symonds,et al.  Attrition of CaO-based pellets in a 0.1 MWth dual fluidized bed pilot plant for post-combustion CO2 capture , 2016 .

[104]  Changsui Zhao,et al.  Enhancement of Ca‐Based Sorbent Multicyclic Behavior in Ca Looping Process for CO2 Separation , 2009 .

[105]  Jinhui Peng,et al.  Development of sintering-resistant CaO-based sorbent derived from eggshells and bauxite tailings for cyclic CO2 capture. , 2016, Environmental pollution.

[106]  Fabio Montagnaro,et al.  Fluidized bed calcium looping: The effect of SO2 on sorbent attrition and CO2 capture capacity , 2012 .

[107]  C. Zheng,et al.  Characterization and evaluation of Fe2O3/Al2O3 oxygen carrier prepared by sol–gel combustion synthesis , 2011 .

[108]  Amornvadee Veawab,et al.  Investigation of low-toxic organic corrosion inhibitors for CO2 separation process using aqueous MEA solvent , 2001 .

[109]  A. Sayari,et al.  A highly efficient CaO-based CO2 sorbent prepared by a citrate-assisted sol–gel technique , 2015 .

[110]  D. Bunn,et al.  Investment risks under uncertain climate change policy , 2007 .

[111]  Shuimu Wu,et al.  CO2 capture performance of synthetic sorbent prepared from carbide slag and aluminum nitrate hydrate by combustion synthesis , 2015 .

[112]  Chien Cheng Li,et al.  Cyclic performance of CaCO3@mSiO2 for CO2 capture in a calcium looping cycle , 2014 .

[113]  Tim P. Comyn,et al.  Durability of CaO–CaZrO3 Sorbents for High-Temperature CO2 Capture Prepared by a Wet Chemical Method , 2014 .

[114]  Jose Manuel Valverde,et al.  Ca-looping for postcombustion CO2 capture: A comparative analysis on the performances of dolomite and limestone , 2015 .

[115]  J. Carlos Abanades,et al.  CO2 Looping Cycle Performance of a High-Purity Limestone after Thermal Activation/Doping , 2008 .

[116]  Mónica Alonso,et al.  Sorbent attrition in a carbonation/calcination pilot plant for capturing CO2 from flue gases , 2010 .

[117]  T. Shimizu,et al.  A twin fluid-bed reactor for removal of CO2 from combustion processes , 1999 .

[118]  Vasilije Manovic,et al.  Assessment of limestone treatment with organic acids for CO2 capture in Ca-looping cycles , 2013 .

[119]  Juan Carlos Abanades,et al.  Enhancement of CaO for CO2 capture in an FBC environment , 2003 .

[120]  Changsui Zhao,et al.  CO2 Capture Using CaO Modified with Ethanol/Water Solution during Cyclic Calcination/Carbonation , 2008 .

[121]  Liang-Shih Fan,et al.  Chemical Looping Systems for Fossil Energy Conversions , 2010 .

[122]  L. Romeo,et al.  Optimizing make-up flow in a CO2 capture system using CaO , 2009 .

[123]  E. J. Anthony,et al.  A study on the activity of CaO-based sorbents for capturing CO2 in clean energy processes , 2010 .

[124]  Paul S. Fennell,et al.  The calcium looping cycle for large-scale CO2 capture , 2010 .

[125]  Jochen Ströhle,et al.  Carbonate looping experiments in a 1 MWth pilot plant and model validation , 2014 .

[126]  H Herzog,et al.  Capturing greenhouse gases. , 2000, Scientific American.

[127]  Howard J. Herzog,et al.  Cost and U.S. public policy for new coal power plants with carbon capture and sequestration , 2009 .

[128]  J. Grace,et al.  CO2 sorbent attrition testing for fluidized bed systems , 2014 .

[129]  V. Manović,et al.  Modified lime-based pellet sorbents for high-temperature CO2 capture: Reactivity and attrition behavior , 2012 .

[130]  Hydration Reactivation of CaO-Based Sorbent for Cyclic Calcination-Carbonation Reactions , 2009 .

[131]  Juan Adánez,et al.  Study of modified calcium hydroxides for enhancing SO2 removal during sorbent injection in pulverized coal boilers , 1997 .

[132]  Nilay Shah,et al.  An overview of CO2 capture technologies , 2010 .

[133]  Jinsheng Wang,et al.  Reactivation of fluidised bed combustor ash for sulphur capture , 2003 .

[134]  A. Sánchez-Biezma,et al.  Testing postcombustion CO2 capture with CaO in a 1.7 MWt pilot facility , 2013 .

[135]  V. Manović,et al.  SO2 retention by reactivated CaO-based sorbent from multiple CO2 capture cycles. , 2007, Environmental science & technology.

[136]  Vasilije Manovic,et al.  Post-combustion CO2 capture by formic acid-modified CaO-based sorbents , 2013 .

[137]  Paul S. Fennell,et al.  Improvement of Limestone-Based CO2 Sorbents for Ca Looping by HBr and Other Mineral Acids , 2013 .

[138]  Changsui Zhao,et al.  CO2 capture and attrition performance of CaO pellets with aluminate cement under pressurized carbonation , 2012 .

[139]  J. Carlos Abanades,et al.  Determination of the Critical Product Layer Thickness in the Reaction of CaO with CO2 , 2005 .

[140]  Wilhelm Kuckshinrichs,et al.  Worldwide innovations in the development of carbon capture technologies and the utilization of CO2 , 2012 .

[141]  P. Salatino,et al.  A comparative characterization study of Ca-looping natural sorbents , 2013 .

[142]  Gary T. Rochelle,et al.  Monoethanolamine Degradation: O2 Mass Transfer Effects under CO2 Capture Conditions , 2004 .

[143]  By Vlatko Materić,et al.  Effect of repeated steam hydration reactivation on CaO-based sorbents for CO2 capture. , 2010, Environmental science & technology.

[144]  Xin Guo,et al.  Cyclic CO2 capture of CaO-based sorbent in the presence of metakaolin and aluminum (hydr)oxides , 2010 .

[145]  E. J. Anthony,et al.  Fluidized bed combustion systems integrating CO2 capture with CaO. , 2005, Environmental science & technology.

[146]  Rongyue Sun,et al.  Enhancement of CO2 capture capacity by modifying limestone with propionic acid , 2013 .

[147]  Vasilije Manovic,et al.  Thermal activation of CaO-based sorbent and self-reactivation during CO2 capture looping cycles. , 2008, Environmental science & technology.

[148]  Jochen Ströhle,et al.  Carbonate looping process simulation using a 1D fluidized bed model for the carbonator , 2011 .

[149]  Liang-Shih Fan,et al.  Activation Strategies for Calcium-Based Sorbents for CO2 Capture: A Perspective , 2012 .

[150]  E. J. Anthony,et al.  The effect of SO2 on CO2 capture by CaO-based pellets prepared with a kaolin derived Al(OH)3 binder , 2012 .

[151]  R. Barker,et al.  The reversibility of the reaction CaCO3 ⇄ CaO+CO2 , 2007 .

[152]  Borja Arias,et al.  An analysis of the effect of carbonation conditions on CaO deactivation curves , 2011 .

[153]  Vasilije Manovic,et al.  Steam reactivation of spent CaO-based sorbent for multiple CO2 capture cycles. , 2007, Environmental science & technology.

[154]  Borja Arias,et al.  Design of a Novel Fluidized Bed Reactor To Enhance Sorbent Performance in CO2 Capture Systems Using CaO , 2014 .

[155]  J. Carlos Abanades,et al.  CO2 Capture Capacity of CaO in Long Series of Carbonation/Calcination Cycles , 2006 .

[156]  Youn Cheol Kim,et al.  Effects of linear low density polyethylene on physical properties and irradiation effectiveness of polypropylene , 2013, Korean Journal of Chemical Engineering.

[157]  Paitoon Tontiwachwuthikul,et al.  Analysis of Monoethanolamine and Its Oxidative Degradation Products during CO2 Absorption from Flue Gases: A Comparative Study of GC-MS, HPLC-RID, and CE-DAD Analytical Techniques and Possible Optimum Combinations , 2006 .

[158]  V. Manović,et al.  Enhanced CO2 capture by biomass-templated Ca(OH)2-based pellets. , 2015 .

[159]  Nicholas H. Florin,et al.  Additive effects of steam addition and HBr doping for CaO-based sorbents for CO2 capture , 2016 .

[160]  Paul S. Fennell,et al.  The Calcium Looping Cycle for CO2 Capture from Power Generation, Cement Manufacture and Hydrogen Production , 2012 .

[161]  Alexei G. Sankovski,et al.  Special report on emissions scenarios , 2000 .

[162]  Gang Chen,et al.  Reactivation of calcium-based sorbent by water hydration for CO2 capture , 2012 .

[163]  Andrew T. Harris,et al.  Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles , 2009 .

[164]  Liang-Shih Fan,et al.  Clean coal conversion processes – progress and challenges , 2008 .

[165]  Liang-Shih Fan,et al.  Synthesis and Regeneration of Sustainable CaO Sorbents from Chicken Eggshells for Enhanced Carbon Dioxide Capture , 2013 .

[166]  J. Valverde,et al.  Enhancement of fast CO2 capture by a nano-SiO2/CaO composite at Ca-looping conditions. , 2012, Environmental science & technology.

[167]  Chuguang Zheng,et al.  Enhanced cyclic stability of CO2 adsorption capacity of CaO-based sorbents using La2O3 or Ca12Al14O33 as additives , 2011 .

[168]  R. Idem,et al.  Pilot Plant Studies of the CO2 Capture Performance of Aqueous MEA and Mixed MEA/MDEA Solvents at the University of Regina CO2 Capture Technology Development Plant and the Boundary Dam CO2 Capture Demonstration Plant , 2006 .

[169]  P. Fennell,et al.  Steam-Enhanced Calcium Looping Cycles with Calcium Aluminate Pellets Doped with Bromides , 2013 .

[170]  E. J. Anthony,et al.  Spray water reactivation/pelletization of spent CaO-based sorbent from calcium looping cycles. , 2012, Environmental science & technology.