Degradation identification and model parameter estimation in discontinuity-adaptive visual reconstruction

[1]  Thomas S. Huang,et al.  Image processing , 1971 .

[2]  D. Gennery Determination of optical transfer function by inspection of frequency-domain plot , 1973 .

[3]  B. R. Hunt,et al.  The Application of Constrained Least Squares Estimation to Image Restoration by Digital Computer , 1973, IEEE Transactions on Computers.

[4]  T. M. Cannon,et al.  Blind deconvolution through digital signal processing , 1975, Proceedings of the IEEE.

[5]  B. R. Hunt,et al.  Digital Image Restoration , 1977 .

[6]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[7]  J. Woods,et al.  Kalman filtering in two dimensions: Further results , 1981 .

[8]  John Skilling,et al.  Image restoration by a powerful maximum entropy method , 1982, Comput. Vis. Graph. Image Process..

[9]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  José L. Marroquín,et al.  Probabilistic solution of inverse problems , 1985 .

[12]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[13]  C Koch,et al.  Analog "neuronal" networks in early vision. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[14]  O. Axelsson,et al.  On the rate of convergence of the preconditioned conjugate gradient method , 1986 .

[15]  G. Strang A proposal for toeplitz matrix calculations , 1986 .

[16]  A. Murat Tekalp,et al.  Identification of image and blur parameters for the restoration of noncausal blurs , 1986, IEEE Trans. Acoust. Speech Signal Process..

[17]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[18]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[19]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[20]  M. Bertero,et al.  Ill-posed problems in early vision , 1988, Proc. IEEE.

[21]  A. Murat Tekalp,et al.  On statistical identification of a class of linear space-invariant image blurs using non-minimum-phase ARMA models , 1988, IEEE Trans. Acoust. Speech Signal Process..

[22]  T. Chan An Optimal Circulant Preconditioner for Toeplitz Systems , 1988 .

[23]  L. Younes Estimation and annealing for Gibbsian fields , 1988 .

[24]  J. C. Dainty,et al.  Iterative blind deconvolution method and its applications , 1988 .

[25]  Richard G. Lane,et al.  Blind deconvolution of noisy complex-valued image , 1989 .

[26]  Robert Azencott Synchronous Boltzmann Machines and Gibbs Fields: Learning Algorithms , 1989, NATO Neurocomputing.

[27]  L. Younes Parametric Inference for imperfectly observed Gibbsian fields , 1989 .

[28]  Sridhar Lakshmanan,et al.  Simultaneous Parameter Estimation and Segmentation of Gibbs Random Fields Using Simulated Annealing , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Bernard Chalmond,et al.  An iterative Gibbsian technique for reconstruction of m-ary images , 1989, Pattern Recognit..

[30]  Reginald L. Lagendijk,et al.  Identification and restoration of noisy blurred images using the expectation-maximization algorithm , 1990, IEEE Trans. Acoust. Speech Signal Process..

[31]  Aggelos K. Katsaggelos,et al.  Image identification and restoration based on the expectation-maximization algorithm , 1990 .

[32]  H. V. D. Vorst,et al.  SIRT- and CG-type methods for the iterative solution of sparse linear least-squares problems , 1990 .

[33]  B. C. McCallum Blind deconvolution by simulated annealing , 1990 .

[34]  Å. Björck Least squares methods , 1990 .

[35]  A. Murat Tekalp,et al.  Maximum likelihood image and blur identification: a unifying , 1990 .

[36]  Per Christian Hansen,et al.  Truncated Singular Value Decomposition Solutions to Discrete Ill-Posed Problems with Ill-Determined Numerical Rank , 1990, SIAM J. Sci. Comput..

[37]  Berthold K. P. Horn Parallel networks for machine vision , 1991 .

[38]  John L. Wyatt,et al.  Nonlinear analog networks for image smoothing and segmentation , 1991, J. VLSI Signal Process..

[39]  Federico Girosi,et al.  Parallel and Deterministic Algorithms from MRFs: Surface Reconstruction , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Aggelos K. Katsaggelos,et al.  Maximum likelihood blur identification and image restoration using the EM algorithm , 1991, IEEE Trans. Signal Process..

[41]  John W. Woods,et al.  Compound Gauss-Markov random fields for image estimation , 1991, IEEE Trans. Signal Process..

[42]  Russell M. Mersereau,et al.  Blur identification by the method of generalized cross-validation , 1992, IEEE Trans. Image Process..

[43]  Richard G. Lane,et al.  Blind deconvolution of speckle images , 1992 .

[44]  Robert Azencott,et al.  Boltzmann Machines : High-Order Interactions and Synchronous Learning , 1992 .

[45]  Riccardo March,et al.  Visual reconstruction with discontinuities using variational methods , 1992, Image Vis. Comput..

[46]  Donald Geman,et al.  Constrained Restoration and the Recovery of Discontinuities , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[48]  Jun Zhang The mean field theory in EM procedures for Markov random fields , 1992, IEEE Trans. Signal Process..

[49]  Wesley E. Snyder,et al.  Mean field annealing: a formalism for constructing GNC-like algorithms , 1992, IEEE Trans. Neural Networks.

[50]  Anna Tonazzini,et al.  Image restoration preserving discontinuities: the Bayesian approach and neural networks , 1992, Image Vis. Comput..

[51]  Jun Zhang,et al.  The mean field theory in EM procedures for blind Markov random field image restoration , 1993, IEEE Trans. Image Process..

[52]  J. Nagy,et al.  FFT-based preconditioners for Toeplitz-block least squares problems , 1993 .

[53]  Anna Tonazzini,et al.  A GNC algorithm for constrained image reconstruction with continuous-valued line processes , 1994, Pattern Recognit. Lett..

[54]  Anna Tonazzini,et al.  A Deterministic Algorithm for Reconstructing Images with Interacting Discontinuities , 1994, CVGIP Graph. Model. Image Process..

[55]  Nikolas P. Galatsanos,et al.  Projection-based blind deconvolution , 1994 .

[56]  J. Nagy,et al.  Circulant Preconditioned Toeplitz Least Squares Iterations , 1994, SIAM J. Matrix Anal. Appl..

[57]  D. J. Evans,et al.  A sparse preconditioner for symmetric positive definite banded circulant and toeplitz linear systems , 1994 .

[58]  Anna Tonazzini,et al.  Edge‐preserving tomographic reconstruction from gaussian data using a gibbs prior and a generalized expectation‐maximization algorithm , 1994, Int. J. Imaging Syst. Technol..

[59]  Clark S. Lindsey,et al.  Survey of neural network hardware , 1995, SPIE Defense + Commercial Sensing.

[60]  Gerhard Winkler,et al.  Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.

[61]  Anna Tonazzini,et al.  Sigmoidal approximations for self-interacting line processes in edge-preserving image restoration , 1995, Pattern Recognit. Lett..

[62]  Stan Z. Li,et al.  Markov Random Field Modeling in Computer Vision , 1995, Computer Science Workbench.

[63]  Mostafa Kaveh,et al.  A regularization approach to joint blur identification and image restoration , 1996, IEEE Trans. Image Process..

[64]  E. Salerno,et al.  Models and Algorithms for Edge-Preserving Image Reconstruction , 1996 .

[65]  Raymond H. Chan,et al.  Conjugate Gradient Methods for Toeplitz Systems , 1996, SIAM Rev..

[66]  Eugene E. Tyrtyshnikov,et al.  Which circulant preconditioner is better? , 1996, Math. Comput..

[67]  Ronald J. Jaszczak,et al.  Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data , 1997, IEEE Transactions on Medical Imaging.

[68]  Michel Barlaud,et al.  Deterministic edge-preserving regularization in computed imaging , 1997, IEEE Trans. Image Process..

[69]  L. Barsanti,et al.  In vivo photocycle of the Euglena gracilis photoreceptor. , 1997, Biophysical journal.

[70]  Josiane Zerubia,et al.  Maximum Likelihood Estimation of Markov Random Field Parameters Using Markov Chain Monte Carlo Algorithms , 1997, EMMCVPR.

[71]  Stan Z. Li,et al.  Close-Form Solution and Parameter Selection for Convex Minimization-Based Edge-Preserving Smoothing , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[72]  Ken D. Sauer,et al.  ML parameter estimation for Markov random fields with applications to Bayesian tomography , 1998, IEEE Trans. Image Process..

[73]  Anna Tonazzini,et al.  Using intensity edges to improve parameter estimation in blind image restoration , 1998, Optics & Photonics.

[74]  Anna Tonazzini,et al.  Unsupervised edge-preserving image restoration via a saddle point approximation , 1999, Image Vis. Comput..

[75]  Anna Tonazzini,et al.  A neural architecture for fully data driven edge-preserving image restoration , 2000, Integr. Comput. Aided Eng..

[76]  Anna Tonazzini,et al.  Fast Fully Data-Driven Image Restoration by means of Edge-Preserving Regularization , 2001, Real Time Imaging.

[77]  Donat-Peter Häder Image analysis : methods and applications , 2001 .

[78]  Anna Tonazzini,et al.  Preconditioned edge-preserving image deblurring and denoising , 2001, Pattern Recognit. Lett..