An error indicator monitor function for an r -adaptive finite-element method

An r -adaptive finite-element method based on moving-mesh partial differential equations (PDEs) and an error indicator is presented. The error indicator is obtained by applying a technique developed by Bank and Weiser to elliptic equations which result in this case from temporal discretization of the underlying physical PDEs on moving meshes. The construction of the monitor function based on the error indicator is discussed. Numerical results obtained with the current method and the commonly used method based on solution gradients are presented and analyzed for several examples. c ∞ 2001 Academic Press

[1]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[2]  C. D. Boor,et al.  Good approximation by splines with variable knots. II , 1974 .

[3]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[4]  I. Babuska,et al.  Adaptive approaches and reliability estimations in finite element analysis , 1979 .

[5]  Keith Miller,et al.  Moving Finite Elements. I , 1981 .

[6]  Leszek Demkowicz,et al.  Adaptive finite elements for flow problems with moving boundaries. part I: Variational principles and a posteriori estimates , 1984 .

[7]  R. Bank,et al.  Some a posteriori error estimators for elliptic partial differential equations , 1985 .

[8]  Joe F. Thompson,et al.  Numerical grid generation , 1985 .

[9]  Leszek Demkowicz,et al.  Adaptive methods for problems in solid and fluid mechanics , 1986 .

[10]  Joseph E. Flaherty,et al.  A moving finite element method with error estimation and refinement for one-dimensional time dependent partial differential equations , 1986 .

[11]  F. Krogh,et al.  Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.

[12]  Joke Blom,et al.  On the use of the arclength and curvature monitor in a moving-grid method which is based on the method of lines , 1989 .

[13]  Claes Johnson,et al.  Adaptive finite element methods for diffusion and convection problems , 1990 .

[14]  Leszek Demkowicz,et al.  A posteriori error analysis in finite elements: the element residual method for symmetrizable problems with applications to compressible Euler and Navier-Stokes equations , 1990 .

[15]  J. Hansen,et al.  Review of some adaptive node-movement techniques in finite-element and finite-difference solutions of partial differential equations , 1991 .

[16]  Leszek Demkowicz,et al.  Adaptive finite element methods for hyperbolic systems with application to transient acoustics , 1991 .

[17]  Randolph E. Bank,et al.  A posteriori error estimates based on hierarchical bases , 1993 .

[18]  Martin H. Gutknecht,et al.  Variants of BICGSTAB for Matrices with Complex Spectrum , 1993, SIAM J. Sci. Comput..

[19]  J. Brackbill An adaptive grid with directional control , 1993 .

[20]  M. Baines Moving finite elements , 1994 .

[21]  Weizhang Huang,et al.  Moving mesh partial differential equations (MMPDES) based on the equidistribution principle , 1994 .

[22]  Claes Johnson,et al.  Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.

[23]  Guojun Liao,et al.  A moving grid finite‐element method using grid deformation , 1995 .

[24]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems V: long-time integration , 1995 .

[25]  Keith Miller,et al.  Design and Application of a Gradient-Weighted Moving Finite Element Code II: in Two Dimensions , 1998, SIAM J. Sci. Comput..

[26]  Robert D. Russell,et al.  Moving Mesh Strategy Based on a Gradient Flow Equation for Two-Dimensional Problems , 1998, SIAM J. Sci. Comput..

[27]  Rüdiger Verfürth,et al.  Robust a posteriori error estimators for a singularly perturbed reaction-diffusion equation , 1998 .

[28]  Keith Miller,et al.  Design and Application of a Gradient-Weighted Moving Finite Element Code I: in One Dimension , 1998, SIAM J. Sci. Comput..

[29]  Rüdiger Verfürth A posteriori error estimators for convection-diffusion equations , 1998, Numerische Mathematik.

[30]  Robert D. Russell,et al.  Anr-Adaptive Finite Element Method Based upon Moving Mesh PDEs , 1999 .

[31]  Endre Süli,et al.  A posteriori error analysis for numerical approximations of Friedrichs systems , 1999, Numerische Mathematik.

[32]  Robert D. Russell,et al.  A Study of Monitor Functions for Two-Dimensional Adaptive Mesh Generation , 1999, SIAM J. Sci. Comput..

[33]  J. Mackenzie,et al.  On a uniformly accurate finite difference approximation of a singulary peturbed reaction-diffusion problem using grid equidistribution , 2001 .

[34]  Thomas Y. Hou,et al.  An efficient dynamically adaptive mesh for potentially singular solutions , 2001 .

[35]  A. Ramage,et al.  On the numerical solution of one-dimensional PDEs using adaptive methods based on equidistribution , 2001 .

[36]  Weizhang Huang Practical aspects of formulation and solution of moving mesh partial differential equations , 2001 .