Erbium implanted thin film photonic materials

Erbium doped materials are of great interest in thin film integrated optoelectronic technology, due to their Er3+ intra-4f emission at 1.54 μm, a standard telecommunication wavelength. Er-doped dielectric thin films can be used to fabricate planar optical amplifiers or lasers that can be integrated with other devices on the same chip. Semiconductors, such as silicon, can also be doped with erbium. In this case the Er may be excited through optically or electrically generated charge carriers. Er-doped Si light-emitting diodes may find applications in Si-based optoelectronic circuits. In this article, the synthesis, characterization, and application of several different Er-doped thin film photonic materials is described. It focuses on oxide glasses (pure SiO2, phosphosilicate, borosilicate, and soda-lime glasses), ceramic thin films (Al2O3, Y2O3, LiNbO3), and amorphous and crystalline silicon, all doped with Er by ion implantation. MeV ion implantation is a technique that is ideally suited to dope these mat...

[1]  F. Widdershoven,et al.  Excitation and de-excitation of Yb3+ in InP and Er3+ in Si: photoluminescence and impact ionization studies , 1996 .

[2]  H. Karge,et al.  Radiation defects and optical properties of ion implanted silicon dioxide , 1980 .

[3]  G. Davies,et al.  The optical properties of luminescence centres in silicon , 1989 .

[4]  Pieter G. Kik,et al.  Concentration quenching in erbium implanted alkali silicate glasses , 1996 .

[5]  G. N. van den Hoven,et al.  Erbium in crystal silicon: Optical activation, excitation, and concentration limits , 1995 .

[6]  Takada Tatsuo,et al.  Radiation-induced defects by secondary ionizing irradiation in Si-type optical fibers , 1990 .

[7]  Jacobson,et al.  Controlled atomic spontaneous emission from Er3+ in a transparent Si/SiO2 microcavity. , 1993, Physical review letters.

[8]  H. Bernas,et al.  Deep erbium-ytterbium implantation codoping of low-loss silicon oxynitride waveguides , 1995 .

[9]  J. Biersack,et al.  A Monte Carlo computer program for the transport of energetic ions in amorphous targets , 1980 .

[10]  S. Mohr,et al.  Ion implantation, diffusion, and solubility of Nd and Er in LiNbO_3 , 1991 .

[11]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[12]  Sebania Libertino,et al.  The erbium‐impurity interaction and its effects on the 1.54 μm luminescence of Er3+ in crystalline silicon , 1995 .

[13]  H. Güdel,et al.  Dynamics of infrared-to-visible upconversion in Cs3Lu2Br9:1%Er3+ , 1994, Physical review. B, Condensed matter.

[14]  J. Poate,et al.  Room‐temperature sharp line electroluminescence at λ=1.54 μm from an erbium‐doped, silicon light‐emitting diode , 1994 .

[15]  F. Priolo,et al.  Cooperative upconversion in erbium-implanted soda-lime silicate glass optical waveguides , 1995 .

[16]  E.C.M. Pennings,et al.  Optical multi-mode interference devices based on self-imaging: principles and applications , 1995 .

[17]  B. Judd,et al.  Optical Spectra of Transparent Rare Earth Compounds , 1978 .

[18]  C. Skierbiszewski,et al.  Factors Governing the Photoluminescence Yield of Erbium Implanted Silicon , 1996 .

[19]  C. White,et al.  Ion Implantation and Annealing of Crystalline Oxides , 1985 .

[20]  M. J. O'Mahony,et al.  Optical amplifiers and their applications , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[21]  Gerhard Abstreiter,et al.  Electroluminescence of erbium–oxygen‐doped silicon diodes grown by molecular beam epitaxy , 1996 .

[22]  Yingchao Yan,et al.  Luminescence quenching by OH groups in highly Er-doped phosphate glasses , 1995 .

[23]  A. Polman,et al.  High Concentrations of Erbium In Crystal Silicon by Thermal Or Ion-Beam-Induced Epitaxy of Erbium-Implanted Amorphous Silicon , 1993 .

[24]  E. P. EerNisse,et al.  Introduction rates and annealing of defects in ion‐implanted SiO2 layers on Si , 1974 .

[25]  I. M. Jauncey,et al.  Low-noise erbium-doped fibre amplifier operating at 1.54μm , 1987 .

[26]  Toshiaki Ikoma,et al.  Electrochemical Er doping of porous silicon and its room‐temperature luminescence at ∼1.54 μm , 1994 .

[27]  C. Henry,et al.  Glass waveguides on silicon for hybrid optical packaging , 1989 .

[28]  F. Morehead,et al.  A model for the formation of amorphous Si by ion bombardment , 1970 .

[29]  M. Abraham,et al.  Radiation damage in Al2O3 crystals implanted with 3.8 MeV Fe2+ ions☆ , 1991 .

[30]  G. H. Sigel,et al.  Defect centers in a pure‐silica‐core borosilicate‐clad optical fiber: ESR studies , 1976 .

[31]  Mk Meint Smit,et al.  Photoluminescence characterization of Er-implanted Al2O3 films , 1993 .

[32]  A. Axmann,et al.  1.54‐μm electroluminescence of erbium‐doped silicon grown by molecular beam epitaxy , 1985 .

[33]  R. Afzal,et al.  Intensity‐dependent upconversion efficiencies of Er3+ ions in heavy‐metal fluoride glass , 1991 .

[34]  P. H. Citrin,et al.  Local structure of 1.54‐μm‐luminescence Er3+ implanted in Si , 1992 .

[35]  William Primak,et al.  The Radiation Compaction of Vitreous Silica , 1968 .

[36]  Alberto Carnera,et al.  Room‐temperature electroluminescence from Er‐doped crystalline Si , 1994 .

[37]  Martin A. Green,et al.  24% efficient silicon solar cells , 1990, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[38]  G. N. van den Hoven,et al.  Optical doping of soda‐lime‐silicate glass with erbium by ion implantation , 1993 .

[39]  H Melchior,et al.  General self-imaging properties in N × N multimode interference couplers including phase relations. , 1994, Applied optics.

[40]  Richard Ian Laming,et al.  Absorption and emission cross section of Er/sup 3+/ doped silica fibers , 1991 .

[41]  B. P. Zakharchenya,et al.  Room‐temperature photoluminescence of erbium‐doped hydrogenated amorphous silicon , 1995 .

[42]  I. Broser,et al.  Erbium luminescence in doped amorphous silicon , 1990 .

[43]  Paul Lambeck,et al.  Sputter-deposited erbium-doped Y2O3 active optical waveguides , 1993 .

[44]  J. Poate,et al.  The Physics and Application of Si:Er for Light Emitting Diodes , 1993 .

[45]  Jay R. Simpson,et al.  High-gain erbium-doped traveling-wave fiber amplifier , 1987 .

[46]  Mk Meint Smit,et al.  Upconversion in Er-implanted Al2O3 waveguides , 1996 .

[47]  Anne C. Tropper,et al.  Analysis of blue and red laser performance of the infrared-pumped praseodymium-doped fluoride fiber laser , 1994 .

[48]  M. Salvi,et al.  Optical Activation of Er3+ Implanted in Silicon by Oxygen Impurities , 1990 .

[49]  W. Miniscalco Erbium-doped glasses for fiber amplifiers at 1500 nm , 1991 .

[50]  A. Polman,et al.  Photoluminescence of Erbium in Amorphous Silicon: Structural Relaxation and Optical Doping , 1991 .

[51]  Ion implanted Nd:YAG waveguide lasers , 1991 .

[52]  M. Diemeer,et al.  Computational modeling of diffused channel waveguides using a domain integral equation , 1990 .

[53]  R. S. Quimby,et al.  General procedure for the analysis of Er(3+) cross sections. , 1991, Optics letters.

[54]  A. Cacciato,et al.  MeV ion irradiation‐induced creation and relaxation of mechanical stress in silica , 1995 .

[55]  T. Kitagawa,et al.  Erbium-doped silica-based waveguide amplifier integrated with a 980/1530 nm WDM coupler , 1994 .

[56]  Mk Meint Smit,et al.  Net optical gain at 1.53 mu m in Er-doped Al2O3 waveguides on silicon , 1996 .

[57]  Th. Gog,et al.  X-ray standing wave determination of the lattice location of Er diffused into LiNbO3 , 1993 .

[58]  Emmanuel Desurvire,et al.  The Golden Age of Optical Fiber Amplifiers , 1994 .

[59]  R. C. Kistler,et al.  Optical doping of waveguide materials by MeV Er implantation , 1991 .

[60]  A. Polman,et al.  ERBIUM IN CRYSTAL SILICON : SEGREGATION AND TRAPPING DURING SOLID PHASE EPITAXY OF AMORPHOUS SILICON , 1994 .

[61]  Leonard C. Feldman,et al.  Giant enhancement of luminescence intensity in Er‐doped Si/SiO2 resonant cavities , 1992 .

[62]  J. Román,et al.  1.7 μm excited state absorption measurement in erbium‐doped glasses , 1995 .

[63]  A. Polman,et al.  Incorporation of high concentrations of erbium in crystal silicon , 1993 .

[64]  F. Priolo,et al.  The effects of oxygen and defects on the deep‐level properties of Er in crystalline Si , 1995 .

[65]  P. J. Chandler,et al.  Upconversion in ion implanted Er:YAG waveguides , 1994 .

[66]  T. Tombrello,et al.  Radiation damage in vitreous fused silica induced by MeV ion implantation , 1988 .

[67]  W. Krupke OPTICAL ABSORPTION AND FLUORESCENCE INTENSITIES IN SEVERAL RARE-EARTH-DOPED Y$sub 2$O$sub 3$ AND LaF$sub 3$ SINGLE CRYSTALS , 1966 .

[68]  Polman,et al.  Temperature dependence and quenching processes of the intra-4f luminescence of Er in crystalline Si. , 1994, Physical review. B, Condensed matter.

[69]  A. Polman,et al.  Photoluminescence and structural characterization of MeV erbium-implanted silica glass , 1991 .

[70]  S. U. Campisano,et al.  Optical and structural properties of semi-insulating polycrystalline silicon thin films , 1995 .

[71]  Wolfgang Sohler,et al.  Continuous-wave erbium-diffused LiNbO/sub 3/ waveguide laser , 1991 .

[72]  Anthony J. Kenyon,et al.  OPTICAL-PROPERTIES OF PECVD ERBIUM-DOPED SILICON-RICH SILICA - EVIDENCE FOR ENERGY-TRANSFER BETWEEN SILICON MICROCLUSTERS AND ERBIUM IONS , 1994 .

[73]  Ramu V. Ramaswamy,et al.  Ion-exchanged glass waveguides: a review , 1988 .

[74]  Jurgen Michel,et al.  The electrical and defect properties of erbium‐implanted silicon , 1991 .

[75]  P. Townsend Ion implanted waveguides and waveguide lasers , 1992 .

[76]  M. Gauneau,et al.  Optical Activation of Ion Implanted Rare-Earths , 1993 .

[77]  R. Devine Radiation damage and the role of structure in amorphous SiO2 , 1990 .

[78]  H. Suche,et al.  Implantation Doping and Stimulated Emission of Er 3+ in LinbO 3 :Ti Optical Waveguides , 1990 .

[79]  MK Meint Smit,et al.  Low-loss bends in planar optical ridge waveguides , 1988 .

[80]  Johan Nilsson,et al.  Evaluation of parasitic upconversion mechanisms in Er/sup 3+/-doped silica-glass fibers by analysis of fluorescence at 980 nm , 1995 .

[81]  E. Gombia,et al.  The Effects of Impurity Codoping on the Electrical Properties of Erbium Ions in Crystalline Silicon , 1996 .

[82]  G. Curello,et al.  Effect of fluorine co‐implantation on MeV erbium implanted silicon , 1995 .

[83]  S. U. Campisano,et al.  Erbium in oxygen‐doped silicon: Electroluminescence , 1995 .

[84]  A. Polman,et al.  Rapid thermal annealing of MeV erbium implanted LiNbO3 single crystals for optical doping , 1994 .

[85]  F. Priolo,et al.  Electrical and optical characterization of Er‐implanted Si: The role of impurities and defects , 1993 .

[86]  H. Bernas,et al.  Ion beam-induced interfacial growth in Si and silicides , 1995 .

[87]  D. Strauch,et al.  Lattice dynamics of sapphire (Al2O3) , 1993 .

[88]  M.J.F. Digonnet,et al.  Closed-form expressions for the gain in three- and four-level laser fibers , 1990 .

[89]  Mk Meint Smit,et al.  Ultracompact, low-loss directional couplers on InP based on self-imaging by multimode interference , 1991 .

[90]  A. Polman,et al.  Local structure around Er in silica and sodium silicate glasses , 1991 .

[91]  Paul D. Townsend,et al.  Enhancement of luminescence by pulse laser annealing of ion-implanted europium in sapphire and silica , 1995 .

[92]  P. Xie,et al.  Visible cooperative upconversion laser in Er:LiYF(4). , 1992, Optics letters.

[93]  Zheng,et al.  Electroluminescence of erbium-doped silicon. , 1996, Physical review. B, Condensed matter.

[94]  G. N. van den Hoven,et al.  Optimization of an Er-doped silica glass optical waveguide amplifier , 1996 .

[95]  L. Kimerling,et al.  The mechanisms of electronic excitation of rare earth impurities in semiconductors , 1993 .

[96]  P. N. Gibson,et al.  Comparison of heavy-ion, proton and electron irradiation effects in vitreous silica , 1982 .

[97]  Jurgen Michel,et al.  Erbium Doped Silicon for Light Emitting Devices , 1996 .

[98]  A. Polman,et al.  Excitation and deexcitation of Er3+ in crystalline silicon , 1997 .

[99]  R. Macfarlane,et al.  Green infrared‐pumped erbium upconversion laser , 1987 .

[100]  A. J. Bruce,et al.  Concentration and Hydroxyl Impurity Quenching of the 4 I 13/2 – 4 I 15/2 Luminescence in Er 3+ Doped Sodium Silicate Glasses , 1991 .

[101]  Incorporation of Nd implanted in strontiumtitanate studied with photoluminescence , 1993 .

[102]  J. Soares,et al.  7Li(p, α) 4He, PIXE and RBS/channeling studies of the lattice site location of impurities in LiNbO3 and LiNbO3 co-doped with magnesium , 1992 .

[103]  N. Vana,et al.  Radiation induced effects and annealing methods in fiberoptics and glasses , 1982 .

[104]  A. Polman,et al.  Optical and structural properties of MeV erbium‐implanted LiNbO3 , 1994 .

[105]  M. Lannoo,et al.  The Theory of Rare-Earth Impurities in Semiconductors , 1993 .

[106]  D. Lederman,et al.  Upconversion luminescence of Er-doped ZnF/sub 2/ channel waveguides grown by MBE , 1993 .

[107]  G. Hendorfer,et al.  On the local structure of optically active Er centers in Si , 1995 .

[108]  M. Haner,et al.  Systems evaluation of an Er/sup 3+/-doped planar waveguide amplifier , 1993, IEEE Photonics Technology Letters.

[109]  Eugene A. Fitzgerald,et al.  Evaluation of erbium‐doped silicon for optoelectronic applications , 1991 .

[110]  A. Polman,et al.  Origin of the 1.54 μm luminescence of erbium‐implanted porous silicon , 1995 .

[111]  E. J. Friebele,et al.  Effects of ionizing radiation on amorphous insulators , 1982 .

[112]  Polman,et al.  Measuring and modifying the spontaneous emission rate of erbium near an interface. , 1995, Physical review letters.

[113]  Levi,et al.  Excitation mechanisms and optical properties of rare-earth ions in semiconductors. , 1991, Physical review letters.

[114]  S. A. Pollack,et al.  Ion‐pair upconversion pumped laser emission in Er3+ ions in YAG, YLF, SrF2, and CaF2 crystals , 1988 .

[115]  E. Desurvire LIGHTWAVE COMMUNICATIONS : THE FIFTH GENERATION , 1992 .

[116]  F. Priolo,et al.  High efficiency and fast modulation of Er‐doped light emitting Si diodes , 1996 .

[117]  S. U. Campisano,et al.  Erbium in oxygen-doped silicon: Optical excitation , 1995 .

[118]  P. D. Townsend,et al.  Optical effects of ion implantation , 1987 .

[119]  G. N. van den Hoven,et al.  Direct imaging of optical interference in erbium-doped Al(2)O(3) waveguides. , 1996, Optics letters.

[120]  A. Axmann,et al.  1.54‐μm luminescence of erbium‐implanted III‐V semiconductors and silicon , 1983 .

[121]  D. Mccumber,et al.  Einstein Relations Connecting Broadband Emission and Absorption Spectra , 1964 .

[122]  E. Yablonovitch Photonic band-gap structures , 1993 .

[123]  D. R. Wight,et al.  Novel 1×N and N×N integrated optical switches using self‐imaging multimode GaAs/AlGaAs waveguides , 1994 .

[124]  Wolfgang Sohler,et al.  Er‐diffused Ti:LiNbO3 waveguide laser of 1563 and 1576 nm emission wavelengths , 1992 .

[125]  J.J.G.M. van der Tol,et al.  S-bends using offsets in fibre-compatible K/sup +/-Na/sup +/ ion-exchanged glass waveguides , 1991 .

[126]  E. Fitzgerald,et al.  MICROSTRUCTURE OF ERBIUM-IMPLANTED SI , 1991 .

[127]  Needels,et al.  Erbium point defects in silicon. , 1993, Physical review. B, Condensed matter.

[128]  Ion irradiation damage in Er‐doped silica probed by the Er3+ luminescence lifetime at 1.535 μm , 1993 .

[129]  R. Adar,et al.  Adiabatic 3-dB couplers, filters, and multiplexers made with silica waveguides on silicon , 1992 .

[130]  Jurgen Michel,et al.  Impurity enhancement of the 1.54‐μm Er3+ luminescence in silicon , 1991 .

[131]  A. Polman,et al.  Segregation and trapping of erbium at a moving crystal-amorphous Si interface , 1997 .