High-resolution three-dimensional imaging inside biological media using white-light interference microscopy

We present a white-light interference microscope designed to produce high-resolution three-dimensional images of biological media. This technique is an alternative to conventional optical coherence tomography (OCT). The experimental setup is based on a Linnik interferometer illuminated with a tungsten halogen lamp. En face tomographic images are obtained in real-time without scanning by computing the difference of two phase-opposed interferometric images recorded by a high-resolution CCD camera. The short coherence length of the source and the compensation of dispersion mismatch in the interferometer arms yield an optical sectioning ability with 0.8 μm resolution in water. Transverse resolution of 1.0 μm is achieved by using high numerical aperture microscope objectives. A shot-noise limited detection sensitivity of 86 dB can be reached with 2 s acquisition time. High-resolution images of the Xenopus Laevis tadpole are shown.

[1]  J. Fujimoto,et al.  In vivo endoscopic optical biopsy with optical coherence tomography. , 1997, Science.

[2]  R Birngruber,et al.  Optical coherence tomography of the human skin. , 1997, Journal of the American Academy of Dermatology.

[3]  J. Fujimoto,et al.  In vivo retinal imaging by optical coherence tomography. , 1993, Optics letters.

[4]  A. Boccara,et al.  Thermal-light full-field optical coherence tomography. , 2002, Optics letters.

[5]  David A. Jackson,et al.  En-face coherence imaging using galvanometer scanner modulation. , 1998, Optics letters.

[6]  Arnaud Dubois,et al.  Ultrahigh-resolution OCT using white-light interference microscopy , 2003, SPIE BiOS.

[7]  G. Gelikonov,et al.  Endoscopic applications of optical coherence tomography. , 1998, Optics express.

[8]  B E Bouma,et al.  Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography. , 1996, Optics letters.

[9]  J. Fujimoto,et al.  Determination of the refractive index of highly scattering human tissue by optical coherence tomography. , 1995, Optics letters.

[10]  J G Fujimoto,et al.  High-resolution optical coherence tomographic imaging using a mode-locked Ti:Al(2)O(3) laser source. , 1995, Optics letters.

[11]  Brett E. Bouma,et al.  Optical Coherence Tomographic Imaging of In Vivo Cellular Dynamics , 1998 .

[12]  Joseph M. Schmitt,et al.  MODEL OF OPTICAL COHERENCE TOMOGRAPHY OF HETEROGENEOUS TISSUE , 1997 .

[13]  Harald Sattmann,et al.  A thermal light source technique for optical coherence tomography , 2000 .

[14]  J. Izatt,et al.  Real-time in vivo imaging of human gastrointestinal ultrastructure by use of endoscopic optical coherence tomography with a novel efficient interferometer design. , 1999, Optics letters.

[15]  A. Boccara,et al.  High-resolution full-field optical coherence tomography with a Linnik microscope. , 2002, Applied optics.

[16]  J. Fujimoto,et al.  Optical biopsy in human urologic tissue using optical coherence tomography. , 1997, The Journal of urology.

[17]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[18]  Antonello De Martino,et al.  Full-field optical coherence tomography with thermal light. , 2002, Applied optics.

[19]  J. Fujimoto,et al.  Optical biopsy and imaging using optical coherence tomography , 1995, Nature Medicine.

[20]  C K Hitzenberger,et al.  Dispersion effects in partial coherence interferometry: implications for intraocular ranging. , 1999, Journal of biomedical optics.

[21]  J. Fujimoto,et al.  In vivo ultrahigh-resolution optical coherence tomography. , 1999, Optics letters.

[22]  Reginald Birngruber,et al.  Optical Coherence Tomography in the Anterior Segment of the Eye Hans Hoerauf and Reginald Birngruber , 2001 .

[23]  J. Fujimoto,et al.  Optical coherence microscopy in scattering media. , 1994, Optics letters.

[24]  S A Boppart,et al.  High-resolution imaging of gynecologic neoplasms using optical coherence tomography. , 1999, Obstetrics and gynecology.