Effect of silver nanoparticles conjugated to thiosemicarbazide on biofilm formation and expression of intercellular adhesion molecule genes, icaAD, in Staphylococcus aureus

[1]  Hassan Mahmoudi,et al.  Effect of glutathione-stabilized silver nanoparticles on expression of las I and las R of the genes in Pseudomonas aeruginosa strains , 2020, European Journal of Medical Research.

[2]  A. Salehzadeh,et al.  Functionalization of ZnO Nanoparticles by Glutamic Acid and Conjugation with Thiosemicarbazide Alters Expression of Efflux Pump Genes in Multiple Drug-Resistant Staphylococcus aureus Strains. , 2019, Microbial drug resistance.

[3]  Z. Moradi-Shoeili,et al.  Synthesis, Characterization and Functionalization of ZnO Nanoparticles by Glutamic Acid (Glu) and Conjugation of ZnO@Glu by Thiosemicarbazide and Its Synergistic Activity with Ciprofloxacin Against Multi-drug Resistant Staphylococcus aureus , 2019, Journal of Cluster Science.

[4]  Clinical,et al.  Performance standards for antimicrobial susceptibility testing , 2019 .

[5]  Z. Moradi-Shoeili,et al.  Functionalization of Ag Nanoparticles by Glutamic Acid and Conjugation of Ag@Glu by Thiosemicarbazide Enhances the Apoptosis of Human Breast Cancer MCF-7 Cells , 2018, Journal of Cluster Science.

[6]  H. Zamani,et al.  Antibiofilm potential of Lactobacillus plantarum spp. cell free supernatant (CFS) against multidrug resistant bacterial pathogens , 2017 .

[7]  Rohit K. Sharma,et al.  A Novel Approach for Combating Klebsiella pneumoniae Biofilm Using Histidine Functionalized Silver Nanoparticles , 2017, Front. Microbiol..

[8]  Lanying Jin,et al.  Surface chemistry of methanol on different ZnO surfaces studied by vibrational spectroscopy. , 2017, Physical chemistry chemical physics : PCCP.

[9]  E. Zamani,et al.  A review of acrylamide toxicity and its mechanism , 2017 .

[10]  A. Salehzadeh,et al.  Molecular typing of nosocomial Staphylococcus aureus strains associated to biofilm based on the coagulase and protein A gene polymorphisms , 2016, Iranian journal of basic medical sciences.

[11]  P. Hassan,et al.  Covalent bridging of surface functionalized Fe3O4 and YPO4:Eu nanostructures for simultaneous imaging and therapy. , 2015, Dalton transactions.

[12]  H. R. Dash,et al.  Microbial Biotechnology- A Laboratory Manual for Bacterial Systems , 2014, Springer India.

[13]  Kieth J. Thomas,et al.  Revised model of calcium and magnesium binding to the bacterial cell wall , 2014, BioMetals.

[14]  M. Holmes,et al.  The emergence of mecC methicillin-resistant Staphylococcus aureus , 2014, Trends in microbiology.

[15]  Adriano Brandelli,et al.  Anti-adhesion and antibacterial activity of silver nanoparticles supported on graphene oxide sheets. , 2014, Colloids and surfaces. B, Biointerfaces.

[16]  Soumyo Mukherji,et al.  Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy , 2014 .

[17]  A. van Belkum,et al.  Quantitative PCR analysis of genes expressed during biofilm development of methicillin resistant Staphylococcus aureus (MRSA). , 2013, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[18]  Michał Moritz,et al.  The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles , 2013 .

[19]  J. Lead,et al.  Impact of silver nanoparticles on natural marine biofilm bacteria. , 2011, Chemosphere.

[20]  Peter L. Irwin,et al.  Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles against Campylobacter jejuni , 2011, Applied and Environmental Microbiology.

[21]  J. Potts,et al.  Role of Surface Protein SasG in Biofilm Formation by Staphylococcus aureus , 2010, Journal of bacteriology.

[22]  K. Horii,et al.  A zinc-dependent adhesion module is responsible for intercellular adhesion in staphylococcal biofilms , 2008, Proceedings of the National Academy of Sciences.

[23]  S. Zinjarde,et al.  Disruption of fungal and bacterial biofilms by lauroyl glucose , 2008, Letters in applied microbiology.

[24]  M. Barton,et al.  Partial Nucleotide Sequencing of the mecA Genes of Staphylococcus aureus Isolates from Cats and Dogs , 2006, Journal of Clinical Microbiology.

[25]  C. Solano,et al.  Bap, a Staphylococcus aureus Surface Protein Involved in Biofilm Formation , 2001, Journal of bacteriology.

[26]  M. Pfaffl,et al.  A new mathematical model for relative quantification in real-time RT-PCR. , 2001, Nucleic acids research.

[27]  A. Sartorelli,et al.  Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone; 3-AP): an inhibitor of ribonucleotide reductase with antineoplastic activity. , 1999, Advances in enzyme regulation.

[28]  R. Süssmuth,et al.  Characterization of theN-Acetylglucosaminyltransferase Activity Involved in the Biosynthesis of the Staphylococcus epidermidisPolysaccharide Intercellular Adhesin* , 1998, The Journal of Biological Chemistry.

[29]  R. Süssmuth,et al.  Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. , 1998, The Journal of biological chemistry.

[30]  P. Bindu,et al.  E.s.r. and electrochemical studies of four- and five-coordinate copper(II) complexes containing mixed ligands , 1997 .

[31]  D. Mack,et al.  Molecular basis of intercellular adhesion in the biofilm‐forming Staphylococcus epidermidis , 1996, Molecular microbiology.

[32]  J. Navarrete,et al.  Vibrational study of aspartic acid and glutamic acid dipeptides , 1995 .

[33]  R. Macleod,et al.  Interaction of Mg-2+ with peptidoglycan and its relation to the prevention of lysis of a marine pseudomonad , 1975, Journal of Bacteriology.