Fracture strength of micro-tubular solid oxide fuel cell anode in redox cycling experiments

Abstract The maximum fracture strength of Ni/8YSZ anodes exposed to several redox cycles is compared. The anodes were fabricated using fine and coarse particle size powders. Fine-structured powders show a 77% increase in mechanical strength after exposure to three redox cycles. The coarse-structured material did not produce similar results and redox cycling resulted in gradual decrease in the mechanical stability of the supports. The impact of redox cycling on the microstructure was evaluated using SEM. Fine-structured anodes tend to agglomerate leading to decreased porosity. Coarse anodes did not show any significant changes in microstructure while exposed to redox cycling. The electrochemical performance evaluated under load conditions, and after the first redox cycle, indicates a 40% improvement for the cell fabricated using a fine-structured anode powder. The increase in performance is believed to be due to better adhesion between the anode material and the Ni current collector. The cell fabricated using a coarse-structured anode powder did not recover after the redox cycle.