Compliant rolling-contact architected materials for shape reconfigurability

[1]  K. Bertoldi,et al.  Flexible mechanical metamaterials , 2017 .

[2]  Aneeya K. Samantara,et al.  Highly Active 2D Layered MoS2-rGO Hybrids for Energy Conversion and Storage Applications , 2017, Scientific Reports.

[3]  C. Spadaccini,et al.  Scanning holographic optical tweezers. , 2017, Optics letters.

[4]  Roderic S. Lakes,et al.  Negative-Poisson's-Ratio Materials: Auxetic Solids , 2017 .

[5]  Soroush Kamrava,et al.  Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties , 2017, Scientific Reports.

[6]  Jonathan B. Hopkins,et al.  Mobility and Constraint Analysis of Interconnected Hybrid Flexure Systems via Screw Algebra and Graph Theory , 2017 .

[7]  Damiano Pasini,et al.  Bistable Auxetic Mechanical Metamaterials Inspired by Ancient Geometric Motifs , 2016, 1612.05988.

[8]  B. van Swinderen,et al.  Corrigendum: Flux of signalling endosomes undergoing axonal retrograde transport is encoded by presynaptic activity and TrkB , 2016, Nature Communications.

[9]  L. Valdevit,et al.  Multistable Shape‐Reconfigurable Architected Materials , 2016, Advanced materials.

[10]  Jonathan B. Hopkins,et al.  Architected Materials: Multistable Shape‐Reconfigurable Architected Materials (Adv. Mater. 36/2016) , 2016 .

[11]  F. Scarpa,et al.  Shape morphing Kirigami mechanical metamaterials , 2016, Scientific Reports.

[12]  HyunKi In,et al.  Force characteristics of rolling contact joint for compact structure , 2016, 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[13]  A. Joshi,et al.  Corrigendum: CpG island erosion, polycomb occupancy and sequence motif enrichment at bivalent promoters in mammalian embryonic stem cells , 2016, Scientific Reports.

[14]  George M. Whitesides,et al.  A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom , 2016, Nature Communications.

[15]  Vincenzo Vitelli,et al.  Geared topological metamaterials with tunable mechanical stability , 2016, 1602.08769.

[16]  Larry L. Howell,et al.  Curved-folding-inspired deployable compliant rolling-contact element (D-CORE) , 2016 .

[17]  Mason A. Porter,et al.  Granular crystals: Nonlinear dynamics meets materials engineering , 2015 .

[18]  Tomohiro Tachi,et al.  Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials , 2015, Proceedings of the National Academy of Sciences.

[19]  D. Sussman,et al.  Algorithmic lattice kirigami: A route to pluripotent materials , 2015, Proceedings of the National Academy of Sciences.

[20]  Larry L. Howell,et al.  Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms , 2014 .

[21]  K. Bertoldi,et al.  Complex ordered patterns in mechanical instability induced geometrically frustrated triangular cellular structures. , 2014, Physical review letters.

[22]  V. M. Ghete,et al.  Observation of the Associated Production of a Single Top Quark and a W Boson in pp Collisions at √s=8 TeV , 2014, 1401.2942.

[23]  C. Kane,et al.  Topological boundary modes in isostatic lattices , 2013, Nature Physics.

[24]  John T. Fourkas,et al.  Simultaneous microscale optical manipulation, fabrication and immobilisation in aqueous media , 2012 .

[25]  Jongmin Shim,et al.  Buckling-induced encapsulation of structured elastic shells under pressure , 2012, Proceedings of the National Academy of Sciences.

[26]  Larry L. Howell,et al.  Analysis of Elliptical Rolling Contact Joints in Compression , 2011 .

[27]  V. Popov Contact Mechanics and Friction: Physical Principles and Applications , 2010 .

[28]  Larry L. Howell,et al.  Tension-based multi-stable compliant rolling-contact elements , 2010 .

[29]  K. Lee,et al.  Two‐photon stereolithography for realizing ultraprecise three‐dimensional nano/microdevices , 2009 .

[30]  Just L. Herder,et al.  Perfect static balance with normal springs , 2001 .

[31]  Joseph N. Grima,et al.  Auxetic behavior from rotating squares , 2000 .

[32]  J. P. Kuntz,et al.  Rolling Link Mechanisms , 1995 .

[33]  Lara Hazelton,et al.  Jacob's Ladder , 1982 .

[34]  A. W. Thornton,et al.  Design considerations in a Rolamite knee joint prosthesis. , 1973, Journal of biomedical materials research.

[35]  R. V. Cadman Rolamite-Geometry and Force Analysis , 1969 .

[36]  D. S. Dugdale,et al.  Introduction to the Mechanics of Solids , 1967 .

[37]  Peter A. Halverson,et al.  Multi-stable Compliant Rolling-contact Elements , 2007 .

[38]  Larry L. Howell,et al.  Compliant Rolling-Contact Element Mechanisms , 2005 .

[39]  Clément Gosselin,et al.  A Compliant Rolling Contact Joint and Its Application in a 3-DOF Planar Parallel Mechanism With Kinematic Analysis , 2004 .

[40]  Just L. Herder,et al.  An Underactuated Prosthesis Finger Mechanism With Rolling Joints , 2004 .

[41]  Sergio Pellegrino,et al.  Tape-Spring Rolling Hinges , 2002 .

[42]  Just L. Herder,et al.  A laparoscopic grasper with force perception , 1997 .

[43]  Dorothy Moyle Needham,et al.  RED AND WHITE MUSCLE , 1926 .