Pseudomonas putida—a versatile host for the production of natural products

The biosynthesis of natural products by heterologous expression of biosynthetic pathways in amenable production strains enables biotechnological access to a variety of valuable compounds by conversion of renewable resources. Pseudomonas putida has emerged as a microbial laboratory work horse, with elaborated techniques for cultivation and genetic manipulation available. Beyond that, this bacterium offers several particular advantages with regard to natural product biosynthesis, notably a versatile intrinsic metabolism with diverse enzymatic capacities as well as an outstanding tolerance to xenobiotics. Therefore, it has been applied for recombinant biosynthesis of several valuable natural products. This review provides an overview of applications of P. putida as a host organism for the recombinant biosynthesis of such natural products, including rhamnolipids, terpenoids, polyketides and non-ribosomal peptides, and other amino acid-derived compounds. The focus is on de novo natural product synthesis from intrinsic building blocks by means of heterologous gene expression and strain engineering. Finally, the future potential of the bacterium as a chassis organism for synthetic microbiology is pointed out.

[1]  F. Lépine,et al.  Rhamnolipids: diversity of structures, microbial origins and roles , 2010, Applied Microbiology and Biotechnology.

[2]  R. Lenz,et al.  Investigation of the function of proteins associated to polyhydroxyalkanoate inclusions in Pseudomonas putida BMO1. , 1998, Journal of biotechnology.

[3]  L. Blank,et al.  The Functional Structure of Central Carbon Metabolism in Pseudomonas putida KT2440 , 2014, Applied and Environmental Microbiology.

[4]  I. Fujii Heterologous expression systems for polyketide synthases. , 2009, Natural product reports.

[5]  Silvia Kuhlmann,et al.  Metabolic engineering of Pseudomonas putida for methylmalonyl-CoA biosynthesis to enable complex heterologous secondary metabolite formation. , 2006, Chemistry & biology.

[6]  R. Müller,et al.  Posttranslational modification of myxobacterial carrier protein domains in Pseudomonas sp. by an intrinsic phosphopantetheinyl transferase , 2005, Applied Microbiology and Biotechnology.

[7]  A. Steinbüchel,et al.  Role of Fatty Acid De Novo Biosynthesis in Polyhydroxyalkanoic Acid (PHA) and Rhamnolipid Synthesis by Pseudomonads: Establishment of the Transacylase (PhaG)-Mediated Pathway for PHA Biosynthesis inEscherichia coli , 2001, Applied and Environmental Microbiology.

[8]  L. Halverson,et al.  Alginate Production by Pseudomonas putida Creates a Hydrated Microenvironment and Contributes to Biofilm Architecture and Stress Tolerance under Water-Limiting Conditions , 2007, Journal of bacteriology.

[9]  D. Kadouri,et al.  Identification of a methicillin-resistant Staphylococcus aureus inhibitory compound isolated from Serratia marcescens. , 2013, Research in microbiology.

[10]  L. Bigler,et al.  Heterologous expression of a Photorhabdus luminescens syrbactin-like gene cluster results in production of the potent proteasome inhibitor glidobactin A. , 2013, Microbiological research.

[11]  A. Steinbüchel,et al.  Identification of the Anabaena sp. strain PCC7120 cyanophycin synthetase as suitable enzyme for production of cyanophycin in gram-negative bacteria like Pseudomonas putida and Ralstonia eutropha. , 2004, Biomacromolecules.

[12]  V. de Lorenzo,et al.  Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. , 2011, Environmental microbiology.

[13]  N. Wierckx,et al.  Complete genome sequence of solvent-tolerant Pseudomonas putida S12 including megaplasmid pTTS12. , 2015, Journal of biotechnology.

[14]  E. Lagendijk,et al.  Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms , 2003, Molecular microbiology.

[15]  J. Loper,et al.  Genomics of secondary metabolite production by Pseudomonas spp. , 2009, Natural product reports.

[16]  R. Müller,et al.  Identification and analysis of the core biosynthetic machinery of tubulysin, a potent cytotoxin with potential anticancer activity. , 2004, Chemistry & biology.

[17]  C. Williams,et al.  Bacterial synthesis of biodegradable polyhydroxyalkanoates , 2007, Journal of applied microbiology.

[18]  P. Bakker,et al.  Effects of Pseudomonas putida modified to produce phenazine-1-carboxylic acid and 2,4-diacetylphloroglucinol on the microflora of field grown wheat , 2002, Antonie van Leeuwenhoek.

[19]  Víctor de Lorenzo,et al.  The Standard European Vector Architecture (SEVA) plasmid toolkit. , 2014, Methods in molecular biology.

[20]  P. A. Silva,et al.  Antimicrobial activity of prodigiosin isolated from Serratia marcescens UFPEDA 398 , 2015, World journal of microbiology & biotechnology.

[21]  G. Cornelis,et al.  Expression of the lactose transposon Tn951 in Escherichia coli, Proteus and Pseudomonas. , 1980, Journal of general microbiology.

[22]  Li Cao,et al.  Construction of a stable genetically engineered rhamnolipid-producing microorganism for remediation of pyrene-contaminated soil , 2012, World Journal of Microbiology and Biotechnology.

[23]  Rolf Müller,et al.  Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting , 2012, Nature Biotechnology.

[24]  M. Ebert,et al.  Biosynthesis of the proteasome inhibitor syringolin A: the ureido group joining two amino acids originates from bicarbonate , 2009, BMC Biochemistry.

[25]  Doreen Heerd,et al.  Integrated bioprocess for the oxidation of limonene to perillic acid with Pseudomonas putida DSM 12264 , 2009 .

[26]  Rolf Müller,et al.  Recent advances in the heterologous expression of microbial natural product biosynthetic pathways. , 2013, Natural product reports.

[27]  J. Keasling,et al.  Biosynthesis of plant isoprenoids: perspectives for microbial engineering. , 2009, Annual review of plant biology.

[28]  Andreas Schmid,et al.  Whole‐cell‐based CYP153A6‐catalyzed (S)‐limonene hydroxylation efficiency depends on host background and profits from monoterpene uptake via AlkL , 2013, Biotechnology and bioengineering.

[29]  Alexander Steinb�chel,et al.  Increased Lysine Content Is the Main Characteristic of the Soluble Form of the Polyamide Cyanophycin Synthesized by Recombinant Escherichia coli , 2013, Applied and Environmental Microbiology.

[30]  S. Lee,et al.  Chiral compounds from bacterial polyesters: sugars to plastics to fine chemicals. , 1999, Biotechnology and bioengineering.

[31]  Haruo Ikeda,et al.  Exploration and mining of the bacterial terpenome. , 2012, Accounts of chemical research.

[32]  N. Wierckx,et al.  Bioproduction of p-Hydroxystyrene from Glucose by the Solvent-Tolerant Bacterium Pseudomonas putida S12 in a Two-Phase Water-Decanol Fermentation , 2008, Applied and Environmental Microbiology.

[33]  Costas Tsouris,et al.  Separation of CO2 from Flue Gas: A Review , 2005 .

[34]  N. Baião,et al.  Pigmenting Efficacy of Several Oxycarotenoids on Egg Yolk , 1999 .

[35]  Kira J Weissman,et al.  Heterologous expression and genetic engineering of the tubulysin biosynthetic gene cluster using Red/ET recombineering and inactivation mutagenesis. , 2012, Chemistry & biology.

[36]  Marius Henkel,et al.  Rhamnolipids--next generation surfactants? , 2012, Journal of biotechnology.

[37]  L. Blank,et al.  Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis. , 2010, Antioxidants & redox signaling.

[38]  Yasser A. Elnakady,et al.  Pretubulysin: From Hypothetical Biosynthetic Intermediate to Potential Lead in Tumor Therapy , 2012, PloS one.

[39]  Liisa Holm,et al.  Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes , 2014, Proceedings of the National Academy of Sciences.

[40]  Ascomycete communities in the rhizosphere of field-grown wheat are not affected by introductions of genetically modified Pseudomonas putida WCS358r. , 2005, Environmental microbiology.

[41]  H. Heipieper,et al.  Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems , 2007, Applied Microbiology and Biotechnology.

[42]  Joern Hopke,et al.  Genetically Modified Bacterial Strains and Novel Bacterial Artificial Chromosome Shuttle Vectors for Constructing Environmental Libraries and Detecting Heterologous Natural Products in Multiple Expression Hosts , 2004, Applied and Environmental Microbiology.

[43]  Jason A. Papin,et al.  Genome-Scale Reconstruction and Analysis of the Pseudomonas putida KT2440 Metabolic Network Facilitates Applications in Biotechnology , 2008, PLoS Comput. Biol..

[44]  A Fiechter,et al.  Production of Pseudomonas aeruginosa Rhamnolipid Biosurfactants in Heterologous Hosts , 1995, Applied and environmental microbiology.

[45]  H. Ruijssenaars,et al.  Bioproduction of p-hydroxybenzoate from renewable feedstock by solvent-tolerant Pseudomonas putida S12. , 2007, Journal of biotechnology.

[46]  M. Cha,et al.  Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. , 2008, Bioresource technology.

[47]  M. Sam,et al.  Prodigiosin isolated from cell wall of Serratia marcescens alters expression of apoptosis-related genes and increases apoptosis in colorectal cancer cells , 2014, Medical Oncology.

[48]  Stephan Thies,et al.  Novel broad host range shuttle vectors for expression in Escherichia coli, Bacillus subtilis and Pseudomonas putida. , 2012, Journal of biotechnology.

[49]  Rolf Müller,et al.  Heterologous expression of a myxobacterial natural products assembly line in pseudomonads via red/ET recombineering. , 2005, Chemistry & biology.

[50]  V. Lorenzo,et al.  Biotechnological domestication of pseudomonads using synthetic biology , 2014, Nature Reviews Microbiology.

[51]  J. Ramos,et al.  Microbial responses to xenobiotic compounds. Identification of genes that allow Pseudomonas putida KT2440 to cope with 2,4,6‐trinitrotoluene , 2009, Microbial biotechnology.

[52]  V. Urlacher,et al.  Biosynthesis of zeaxanthin in recombinant Pseudomonas putida , 2011, Applied Microbiology and Biotechnology.

[53]  V. de Lorenzo,et al.  Engineering the Soil Bacterium Pseudomonas putida for Arsenic Methylation , 2013, Applied and Environmental Microbiology.

[54]  J. Raaijmakers,et al.  Functional, genetic and chemical characterization of biosurfactants produced by plant growth‐promoting Pseudomonas putida 267 , 2009, Journal of applied microbiology.

[55]  T. Matsuyama,et al.  Serrawettins and Other Surfactants Produced by Serratia , 2011 .

[56]  M. Srivastava Biological Control of Soil Borne Pathogens (Fusarium Oxysporum f.sp. Cucumerinum.) of Cucumber (Cucumis Sativus) by Trichoderma sp. , 2017 .

[57]  O. White,et al.  Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. , 2002, Environmental microbiology.

[58]  F. Lépine,et al.  Characterization of rhamnolipid production by Burkholderia glumae , 2011, Letters in applied microbiology.

[59]  A. Steinbüchel,et al.  Heterologous expression of cyanophycin synthetase and cyanophycin synthesis in the industrial relevant bacteria Corynebacterium glutamicum and Ralstonia eutropha and in Pseudomonas putida. , 2001, Biomacromolecules.

[60]  R. Daniel,et al.  Complete genome sequence of the lipase producing strain Burkholderia glumae PG1. , 2015, Journal of biotechnology.

[61]  Finian J. Leeper,et al.  The biosynthesis and regulation of bacterial prodiginines , 2006, Nature Reviews Microbiology.

[62]  P. Gkorezis,et al.  Industrial Applications of Biosurfactants , 2014 .

[63]  J. D. de Bont,et al.  Adaptation of Pseudomonas putida S12 to high concentrations of styrene and other organic solvents , 1993, Applied and environmental microbiology.

[64]  L. Pierson,et al.  Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes , 2010, Applied Microbiology and Biotechnology.

[65]  Erin M Mitsunaga,et al.  Syrbactin class proteasome inhibitor-induced apoptosis and autophagy occurs in association with p53 accumulation and Akt/PKB activation in neuroblastoma. , 2010, Biochemical pharmacology.

[66]  R. Dudler The role of bacterial phytotoxins in inhibiting the eukaryotic proteasome. , 2014, Trends in microbiology.

[67]  G. Eggink,et al.  Production of poly(3-hydroxyalkanoates) by Pseudomonas putida KT2442 in continuous cultures , 1996, Applied Microbiology and Biotechnology.

[68]  X. Xing,et al.  Pathway redesign for deoxyviolacein biosynthesis in Citrobacter freundii and characterization of this pigment , 2012, Applied Microbiology and Biotechnology.

[69]  J. D. de Bont,et al.  High-rate 3-methylcatechol production in Pseudomonas putida strains by means of a novel expression system , 2001, Applied Microbiology and Biotechnology.

[70]  V. de Lorenzo,et al.  Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene. , 2013, Metabolic engineering.

[71]  D. Haas,et al.  Biological control of soil-borne pathogens by fluorescent pseudomonads , 2005, Nature Reviews Microbiology.

[72]  A. Vollmar,et al.  Pretubulysin: a new option for the treatment of metastatic cancer , 2014, Cell Death and Disease.

[73]  C. Syldatk,et al.  Types and Classification of Microbial Surfactants , 2015 .

[74]  H. Ballerstedt,et al.  Optimization of the solvent-tolerant Pseudomonas putida S12 as host for the production of p-coumarate from glucose , 2007, Applied Microbiology and Biotechnology.

[75]  V. de Lorenzo,et al.  Pseudomonas 2.0: genetic upgrading of P. putida KT2440 as an enhanced host for heterologous gene expression , 2014, Microbial Cell Factories.

[76]  Dov M. Gabbay,et al.  The New Logic , 2001, Log. J. IGPL.

[77]  K. Sigler,et al.  Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus , 2011, Extremophiles.

[78]  Christopher W. Johnson,et al.  Aromatic catabolic pathway selection for optimal production of pyruvate and lactate from lignin. , 2015, Metabolic engineering.

[79]  D. Ryu,et al.  Substrate specificity of nonribosomal peptide synthetase modules responsible for the biosynthesis of the oligopeptide moiety of cephabacin in Lysobacter lactamgenus. , 2006, FEMS microbiology letters.

[80]  J. Altenbuchner,et al.  The Escherichia coli rhamnose promoter rhaPBAD is in Pseudomonas putida KT2440 independent of Crp–cAMP activation , 2010, Applied Microbiology and Biotechnology.

[81]  N. Wierckx,et al.  Engineering of Solvent-Tolerant Pseudomonas putida S12 for Bioproduction of Phenol from Glucose , 2005, Applied and Environmental Microbiology.

[82]  F. Hildebrand,et al.  Draft Genome Sequence Analysis of a Pseudomonas putida W15Oct28 Strain with Antagonistic Activity to Gram-Positive and Pseudomonas sp. Pathogens , 2014, PloS one.

[83]  Johannes H. de Winde,et al.  Comparative transcriptomics and proteomics of p-hydroxybenzoate producing Pseudomonas putida S12: novel responses and implications for strain improvement , 2010, Applied Microbiology and Biotechnology.

[84]  A. Steinbüchel,et al.  Synthesis of a citrulline-rich cyanophycin by use of Pseudomonas putida ATCC 4359 , 2011, Applied Microbiology and Biotechnology.

[85]  J. D. de Winde,et al.  Metabolic and Regulatory Rearrangements Underlying Efficient d-Xylose Utilization in Engineered Pseudomonas putida S12* , 2012, The Journal of Biological Chemistry.

[86]  Y. Kamei,et al.  Lysis of methicillin-resistant Staphylococcus aureus by 2,4-diacetylphloroglucinol produced by Pseudomonas sp. AMSN isolated from a marine alga. , 2003, International journal of antimicrobial agents.

[87]  V. de Lorenzo,et al.  Engineering of alkyl- and haloaromatic-responsive gene expression with mini-transposons containing regulated promoters of biodegradative pathways of Pseudomonas. , 1993, Gene.

[88]  R. Eslamloueyan,et al.  Statistical Screening of Medium Components for Recombinant Production of Pseudomonas aeruginosa ATCC 9027 Rhamnolipids by Nonpathogenic Cell Factory Pseudomonas putida KT2440 , 2014, Molecular Biotechnology.

[89]  S. Brady,et al.  Expanding Small-Molecule Functional Metagenomics through Parallel Screening of Broad-Host-Range Cosmid Environmental DNA Libraries in Diverse Proteobacteria , 2010, Applied and Environmental Microbiology.

[90]  Huimin Zhao,et al.  Biosynthesis of phloroglucinol. , 2005, Journal of the American Chemical Society.

[91]  Rainer Breitling,et al.  Steps towards the synthetic biology of polyketide biosynthesis , 2014, FEMS microbiology letters.

[92]  P. Bakker,et al.  Effect of Genetically Modified Pseudomonas putida WCS358r on the Fungal Rhizosphere Microflora of Field-Grown Wheat , 2001, Applied and Environmental Microbiology.

[93]  S. Dharmaraj,et al.  Pyocyanin: production, applications, challenges and new insights , 2013, World Journal of Microbiology and Biotechnology.

[94]  Nick Wierckx,et al.  Engineering mediator-based electroactivity in the obligate aerobic bacterium Pseudomonas putida KT2440 , 2015, Front. Microbiol..

[95]  K. O’Connor,et al.  The anti-cancer activity of a cationic anti-microbial peptide derived from monomers of polyhydroxyalkanoate. , 2013, Biomaterials.

[96]  R. Lurz,et al.  Activity of the hybrid trp-lac (tac) promoter of Escherichia coli in Pseudomonas putida. Construction of broad-host-range, controlled-expression vectors. , 1983, Gene.

[97]  R. Hausmann,et al.  Heterologous production of the lipopeptide biosurfactant serrawettin W1 in Escherichia coli. , 2014, Journal of biotechnology.

[98]  U. Bauer,et al.  Biocatalytic Production of Perillyl Alcohol from Limonene by Using a Novel Mycobacterium sp. Cytochrome P450 Alkane Hydroxylase Expressed in Pseudomonas putida , 2005, Applied and Environmental Microbiology.

[99]  Jens Schrader,et al.  De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida , 2014, Microbial Cell Factories.

[100]  V. de Lorenzo,et al.  Systems biology approaches to bioremediation. , 2008, Current opinion in biotechnology.

[101]  G. Eggink,et al.  Limonene bioconversion to high concentrations of a single and stable product, perillic acid, by a solvent-resistant Pseudomonas putida strain , 1998, Applied Microbiology and Biotechnology.

[102]  J. D. de Winde,et al.  Improved p-hydroxybenzoate production by engineered Pseudomonas putida S12 by using a mixed-substrate feeding strategy , 2011, Applied Microbiology and Biotechnology.

[103]  P. Dorrestein,et al.  Protein assembly line components in prodigiosin biosynthesis: characterization of PigA,G,H,I,J. , 2006, Journal of the American Chemical Society.

[104]  J. Bont,et al.  The solvent-tolerant Pseudomonas putida S12 as host for the production of cinnamic acid from glucose , 2005, Applied Microbiology and Biotechnology.

[105]  J. Ramos,et al.  Comparative genomics and functional analysis of niche-specific adaptation in Pseudomonas putida , 2010, FEMS microbiology reviews.

[106]  V. de Lorenzo,et al.  Transposon-based and plasmid-based genetic tools for editing genomes of gram-negative bacteria. , 2012, Methods in molecular biology.

[107]  Robert Finking,et al.  Biosynthesis of nonribosomal peptides , 2003 .

[108]  V. de Lorenzo,et al.  New Transposon Tools Tailored for Metabolic Engineering of Gram-Negative Microbial Cell Factories , 2014, Front. Bioeng. Biotechnol..

[109]  D. G. Gibson,et al.  Enzymatic Assembly of Overlapping DNA Fragments , 2011, Methods in Enzymology.

[110]  L. Thomashow,et al.  Identification and Characterization of a Gene Cluster for Synthesis of the Polyketide Antibiotic 2,4-Diacetylphloroglucinol from Pseudomonas fluorescens Q2-87 , 1999, Journal of bacteriology.

[111]  H. Ruijssenaars,et al.  Biological production of monoethanolamine by engineered Pseudomonas putida S12. , 2013, Journal of biotechnology.

[112]  Davy Sinnaeve,et al.  Genetic and Functional Characterization of Cyclic Lipopeptide White-Line-Inducing Principle ( WLIP ) Production by Rice Rhizosphere Isolate Pseudomonas putida RW 10 S 2 , 2012 .

[113]  B. Ramsay,et al.  Carbon-limited fed-batch production of medium-chain-length polyhydroxyalkanoates by a phaZ-knockout strain of Pseudomonas putida KT2440 , 2015, Journal of Industrial Microbiology & Biotechnology.

[114]  Guoqiang Chen,et al.  Microbial production of medium-chain-length 3-hydroxyalkanoic acids by recombinant Pseudomonas putida KT2442 harboring genes fadL, fadD and phaZ. , 2008, FEMS microbiology letters.

[115]  Alexander Steinbüchel,et al.  Metabolic engineering and pathway construction for biotechnological production of relevant polyhydroxyalkanoates in microorganisms , 2003 .

[116]  A. Steinbüchel,et al.  Dipeptides in nutrition and therapy: cyanophycin-derived dipeptides as natural alternatives and their biotechnological production , 2010, Applied Microbiology and Biotechnology.

[117]  B. Sarkar,et al.  Microbial siderophores and their potential applications: a review , 2016, Environmental Science and Pollution Research.

[118]  M. Murakoshi,et al.  Cancer prevention by carotenoids. , 2009, Archives of biochemistry and biophysics.

[119]  A. Escalante,et al.  Rhamnolipids: Production in bacteria other than Pseudomonas aeruginosa , 2010 .

[120]  Karl-Erich Jaeger,et al.  Alternative hosts for functional (meta)genome analysis , 2014, Applied Microbiology and Biotechnology.

[121]  I. V. D. van den Beld,et al.  Bioconversion of limonene to increased concentrations of perillic acid by Pseudomonas putida GS1 in a fed-batch reactor , 2001, Applied Microbiology and Biotechnology.

[122]  Chi-Won Choi,et al.  Proteomic characterization of the outer membrane vesicle of Pseudomonas putida KT2440. , 2014, Journal of proteome research.

[123]  M. Marahiel,et al.  Nonribosomal peptide synthetases: structures and dynamics. , 2010, Current opinion in structural biology.

[124]  Davy Sinnaeve,et al.  Genetic and Functional Characterization of Cyclic Lipopeptide White-Line-Inducing Principle (WLIP) Production by Rice Rhizosphere Isolate Pseudomonas putida RW10S2 , 2012, Applied and Environmental Microbiology.

[125]  H. Jenke-Kodama,et al.  Bacterial type III polyketide synthases: phylogenetic analysis and potential for the production of novel secondary metabolites by heterologous expression in pseudomonads , 2006, Archives of Microbiology.

[126]  A. Steinbüchel,et al.  Features of the biotechnologically relevant polyamide family “cyanophycins” and their biosynthesis in prokaryotes and eukaryotes , 2016, Critical reviews in biotechnology.

[127]  R. Takors,et al.  Genome reduction boosts heterologous gene expression in Pseudomonas putida , 2015, Microbial Cell Factories.

[128]  Jean-Paul Meijnen,et al.  Sustainable production of fine chemicals by the solvent-tolerant Pseudomonas putida S12 using lignocellulosic feedstock , 2011 .

[129]  R. Hausmann,et al.  Rhamnolipids: Detection, Analysis, Biosynthesis, Genetic Regulation, and Bioengineering of Production , 2011 .

[130]  Markus Michael Müller,et al.  Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems , 2010, Applied Microbiology and Biotechnology.

[131]  N. Christova,et al.  Biosurfactant Production By A New Pseudomonas Putida Strain , 2002, Zeitschrift fur Naturforschung. C, Journal of biosciences.

[132]  A. Rahier,et al.  Biogenesis, molecular regulation and function of plant isoprenoids. , 2005, Progress in lipid research.

[133]  Bernard R. Glick,et al.  Plant Growth-Promoting Bacteria: Mechanisms and Applications , 2012, Scientifica.

[134]  Jia Zeng,et al.  Biochemical Characterization of a Type III Polyketide Biosynthetic Gene Cluster from Streptomyces toxytricini , 2012, Applied Biochemistry and Biotechnology.

[135]  Frank Buchholz,et al.  A new logic for DNA engineering using recombination in Escherichia coli , 1998, Nature Genetics.

[136]  J. Copp,et al.  Rapid and flexible biochemical assays for evaluating 4'-phosphopantetheinyl transferase activity. , 2011, The Biochemical journal.

[137]  Christoph Wittmann,et al.  Metabolic physiology of Pseudomonas putida for heterologous production of myxochromide , 2006 .

[138]  B. Pfeifer,et al.  Heterologous production of plant-derived isoprenoid products in microbes and the application of metabolic engineering and synthetic biology. , 2014, Current opinion in plant biology.

[139]  J. Schrader Microbial Flavour Production , 2007 .

[140]  Haoran Zhang,et al.  Methods and options for the heterologous production of complex natural products. , 2011, Natural product reports.

[141]  Michael A McDonough,et al.  The enzymes of β-lactam biosynthesis. , 2013, Natural product reports.

[142]  V. de Lorenzo,et al.  A T7 RNA polymerase-based system for the construction of Pseudomonas strains with phenotypes dependent on TOL-meta pathway effectors. , 1993, Gene.

[143]  A. Stewart,et al.  Reconstitution of the Myxothiazol Biosynthetic Gene Cluster by Red/ET Recombination and Heterologous Expression in Myxococcus xanthus , 2006, Applied and Environmental Microbiology.

[144]  Kai Blin,et al.  antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters , 2015, Nucleic Acids Res..

[145]  A. Huber,et al.  Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin. , 2014, Journal of proteomics.

[146]  N. Sakthivel,et al.  5-Methyl phenazine-1-carboxylic acid: a novel bioactive metabolite by a rhizosphere soil bacterium that exhibits potent antimicrobial and anticancer activities. , 2015, Chemico-biological interactions.

[147]  Alexander Steinbüchel,et al.  Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production , 2007, Applied Microbiology and Biotechnology.

[148]  V. de Lorenzo,et al.  Engineering of a Stable Whole-Cell Biocatalyst Capable of (S)-Styrene Oxide Formation for Continuous Two-Liquid-Phase Applications , 1999, Applied and Environmental Microbiology.

[149]  Charles Arthur Mercier A New Logic , 2007 .

[150]  Bernhard O. Palsson,et al.  A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory , 2008, BMC Systems Biology.

[151]  L. Blank,et al.  Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440 , 2011, Microbial cell factories.

[152]  Ben Shen,et al.  Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. , 2003, Current opinion in chemical biology.

[153]  T. Drepper,et al.  TREX: a universal tool for the transfer and expression of biosynthetic pathways in bacteria. , 2013, ACS synthetic biology.

[154]  H. Miyashita,et al.  Organization and expression in Pseudomonas putida of the gene cluster involved in cephalosporin biosynthesis from Lysobacter lactamgenus YK90. , 1996, Applied microbiology and biotechnology.

[155]  C. Wittmann,et al.  Industrial biotechnology of Pseudomonas putida and related species , 2012, Applied Microbiology and Biotechnology.

[156]  R. Santelli,et al.  The anticancer drug perillyl alcohol is a Na/K-ATPase inhibitor , 2010, Molecular and Cellular Biochemistry.

[157]  R. Rodríguez-Vázquez,et al.  Role of Phenanthrene in Rhamnolipid Production by P. putida in Different Media , 2006, Environmental technology.

[158]  Rashida Ali,et al.  Dietary Sources of Lutein and Zeaxanthin Carotenoids and Their Role in Eye Health , 2013, Nutrients.

[159]  Naim Kosaric,et al.  Biosurfactants : Production and Utilization-Processes, Technologies, and Economics , 2014 .

[160]  A. Stewart,et al.  Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition , 2008, Nucleic acids research.

[161]  Guillermo Gosset,et al.  Production of aromatic compounds in bacteria. , 2009, Current opinion in biotechnology.