Switching of pseudorotaxanes and catenanes incorporating a tetrathiafulvalene unit by redox and chemical inputs

An acyclic polyether 1a, incorporating a central tetrathiafulvalene (TTF) electron donor unit and two 4-tert-butylphenoxy groups at its termini, has been synthesized. Two macrocyclic polyethers containing two different electron donors, namely a TTF unit with, in one case, a 1,4-dioxybenzene ring (2a), and, in the other case (2b), a 1,5-dioxynaphthalene ring system, have also been synthesized. These two macrocyclic polyethers have been mechanically interlocked in kinetically controlled template-directed syntheses with cyclobis(paraquat-p-phenylene) cyclophane (3(4+)) to afford the [2]catenanes 2a/3(4+) and 2b/3(4+), respectively. X-ray crystallography reveals that the [2]-catenane 2b/3(4+) has the TTF unit of 2b located inside the cavity of 3(4+). The spectroscopic (UV/vis and 1H NMR) and electrochemical properties of compounds 1a, 2a, 2b, 2a/3(4+), and 2b/3(4+) and of the [2]pseudorotaxane 1a.3(4+) were investigated. The absorption and emission properties of the mono- and dioxidized forms of the TTF unit in these various species have also been studied. The results obtained in acetonitrile solution can be summarized as follows. (a) While TTF2+ exhibits a strong fluorescence, no emission can be observed for the TTF2+ units contained in the polyethers and in their pseudorotaxanes and catenanes. (b) A donor-acceptor absorption band is observed upon two-electron oxidation of the TTF unit in the macrocyclic polyethers 2a and 2b. (c) The spontaneous self-assembly of 1a and 3(4+) to give the [2]pseudorotaxane 1a.3(4+) is strongly favored (Kass. = 5 x 10(5) L mol-1) but slow (at 296 K, k = 11.3 L mol-1 s-1 and delta G++ = 15.9 kcal mol-1) because of the steric hindrance associated with the bulky end groups of 1a. (d) In the pseudorotaxane 1a.3(4+), the reversible displacement of the cyclophane from the TTF unit in the threadlike substrate occurs on oxidation/reduction of its electroactive components. (e) Switching between the two translational isomers of the catenanes 2a/3(4+) and 2b/3(4+) occurs by cyclic oxidation and reduction of the TTF unit contained in 2a and in 2b, respectively. (f) Addition of o-chloroanil to the pseudorotaxane 1a.3(4+) and to the catenanes 2a/3(4+) and 2b/3(4+) causes the displacement of the TTF unit from the cavity of the cyclophane 3(4+) because of the formation of an adduct between the TTF unit and o-chloroanil.