Precise and reliable gene expression via standard transcription and translation initiation elements

[1]  Drew Endy,et al.  Quantitative estimation of activity and quality for collections of functional genetic elements , 2013, Nature Methods.

[2]  D. Endy,et al.  A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast. , 2012, Virology.

[3]  Christina D Smolke,et al.  Synthetic RNA switches as a tool for temporal and spatial control over gene expression. , 2012, Current opinion in biotechnology.

[4]  Christopher A. Voigt,et al.  Ribozyme-based insulator parts buffer synthetic circuits from genetic context , 2012, Nature Biotechnology.

[5]  Adam P Arkin,et al.  RNA processing enables predictable programming of gene expression , 2012, Nature Biotechnology.

[6]  Gabriel C. Wu,et al.  Successes and failures in modular genetic engineering. , 2012, Current Opinion in Chemical Biology.

[7]  Huimin Zhao,et al.  Directed evolution: an evolving and enabling synthetic biology tool. , 2012, Current opinion in chemical biology.

[8]  Brian F. Pfleger,et al.  A translation-coupling DNA cassette for monitoring protein translation in Escherichia coli. , 2012, Metabolic engineering.

[9]  A. Arkin,et al.  Contextualizing context for synthetic biology – identifying causes of failure of synthetic biological systems , 2012, Biotechnology journal.

[10]  D. Endy,et al.  Rewritable digital data storage in live cells via engineered control of recombination directionality , 2012, Proceedings of the National Academy of Sciences.

[11]  Christopher A. Voigt,et al.  Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca , 2012, Proceedings of the National Academy of Sciences.

[12]  Vivek K. Mutalik,et al.  Predicting the strength of UP-elements and full-length E. coli σE promoters , 2011, Nucleic acids research.

[13]  P. Dehaseth,et al.  Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. , 2011, Journal of molecular biology.

[14]  Adam P Arkin,et al.  Toward rational design of bacterial genomes. , 2011, Current opinion in microbiology.

[15]  J. Keasling,et al.  BglBrick vectors and datasheets: A synthetic biology platform for gene expression , 2011, Journal of biological engineering.

[16]  J. Keasling,et al.  Targeted proteomics for metabolic pathway optimization: application to terpene production. , 2011, Metabolic engineering.

[17]  Tom Ellis,et al.  DNA assembly for synthetic biology: from parts to pathways and beyond. , 2011, Integrative biology : quantitative biosciences from nano to macro.

[18]  C. Yanofsky,et al.  Regulation of transcription by unnatural amino acids , 2011, Nature Biotechnology.

[19]  J. Keasling Manufacturing Molecules Through Metabolic Engineering , 2010, Science.

[20]  Joseph H. Davis,et al.  Design, construction and characterization of a set of insulated bacterial promoters , 2010, Nucleic acids research.

[21]  Thomas H Segall-Shapiro,et al.  Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome , 2010, Science.

[22]  M. Eisen,et al.  The Fitness Landscapes of cis-Acting Binding Sites in Different Promoter and Environmental Contexts , 2010, PLoS genetics.

[23]  Joseph D Puglisi,et al.  Single ribosome dynamics and the mechanism of translation. , 2010, Annual review of biophysics.

[24]  Vivek K. Mutalik,et al.  Predicting strength and function for promoters of the Escherichia coli alternative sigma factor, σE , 2010, Proceedings of the National Academy of Sciences.

[25]  R. Kwok Five hard truths for synthetic biology , 2010, Nature.

[26]  Christina D Smolke,et al.  Building outside of the box: iGEM and the BioBricks Foundation , 2009, Nature Biotechnology.

[27]  James J. Collins,et al.  Next-Generation Synthetic Gene Networks , 2009, Nature Biotechnology.

[28]  Vivek K. Mutalik,et al.  Promoter Strength Properties of the Complete Sigma E Regulon of Escherichia coli and Salmonella enterica , 2009, Journal of bacteriology.

[29]  C. Gustafsson,et al.  You're one in a googol: optimizing genes for protein expression , 2009, Journal of The Royal Society Interface.

[30]  A. Gulevich,et al.  A new method for the construction of translationally coupled operons in a bacterial chromosome , 2009, Molecular Biology.

[31]  M. Kashlev,et al.  Mechanism of sequence-specific pausing of bacterial RNA polymerase , 2009, Proceedings of the National Academy of Sciences.

[32]  Priscilla E. M. Purnick,et al.  The second wave of synthetic biology: from modules to systems , 2009, Nature Reviews Molecular Cell Biology.

[33]  David Tollervey,et al.  Coding-Sequence Determinants of Gene Expression in Escherichia coli , 2009, Science.

[34]  Carola Engler,et al.  A One Pot, One Step, Precision Cloning Method with High Throughput Capability , 2008, PloS one.

[35]  D. Endy,et al.  Refinement and standardization of synthetic biological parts and devices , 2008, Nature Biotechnology.

[36]  R. Storms,et al.  A xyloglucan-specific family 12 glycosyl hydrolase from Aspergillus niger: recombinant expression, purification and characterization. , 2008, The Biochemical journal.

[37]  M. Elowitz,et al.  Programming gene expression with combinatorial promoters , 2007, Molecular systems biology.

[38]  P. Swain,et al.  Accurate prediction of gene feedback circuit behavior from component properties , 2007, Molecular systems biology.

[39]  W. Materi,et al.  Computational systems biology in cancer: modeling methods and applications. , 2007 .

[40]  Brian F. Pfleger,et al.  Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes , 2006, Nature Biotechnology.

[41]  H. Mori,et al.  Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection , 2006, Molecular systems biology.

[42]  D. Endy Foundations for engineering biology , 2005, Nature.

[43]  D. Endy,et al.  Refactoring bacteriophage T7 , 2005, Molecular systems biology.

[44]  G. Stephanopoulos,et al.  Tuning genetic control through promoter engineering. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[45]  H. Noller,et al.  mRNA Helicase Activity of the Ribosome , 2005, Cell.

[46]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[47]  J. Keasling,et al.  Engineering a mevalonate pathway in Escherichia coli for production of terpenoids , 2003, Nature Biotechnology.

[48]  R. Tsien,et al.  A monomeric red fluorescent protein , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[49]  S. Wold,et al.  PLS-regression: a basic tool of chemometrics , 2001 .

[50]  Harry F. Noller,et al.  The Path of Messenger RNA through the Ribosome , 2001, Cell.

[51]  D. Scherbakov,et al.  Overlapping genes in bacterial and phage genomes , 2000, Molecular Biology.

[52]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[53]  M. Kozak Initiation of translation in prokaryotes and eukaryotes. , 1999, Gene.

[54]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[55]  H. Bujard,et al.  Independent and tight regulation of transcriptional units in Escherichia coli via the LacR/O, the TetR/O and AraC/I1-I2 regulatory elements. , 1997, Nucleic acids research.

[56]  C. Gross,et al.  Determination of intrinsic transcription termination efficiency by RNA polymerase elongation rate. , 1994, Science.

[57]  T. D. Schneider,et al.  Quantitative analysis of ribosome binding sites in E.coli. , 1994, Nucleic acids research.

[58]  M. Dreyfus,et al.  Bacteriophage T7 RNA polymerase travels far ahead of ribosomes in vivo , 1992, Journal of bacteriology.

[59]  A. Smallwood,et al.  The use of two-cistron constructions in improving the expression of a heterologous gene in E. coli. , 1990, Nucleic acids research.

[60]  S. Rangwala,et al.  A novel sequence element derived from bacteriophage T7 mRNA acts as an enhancer of translation of the lacZ gene in Escherichia coli. , 1989, The Journal of biological chemistry.

[61]  J. van Duin,et al.  Translational reinitiation in the presence and absence of a Shine and Dalgarno sequence. , 1989, Nucleic acids research.

[62]  C. S. Devine,et al.  The T7 phage gene 10 leader RNA, a ribosome-binding site that dramatically enhances the expression of foreign genes in Escherichia coli. , 1988, Gene.

[63]  M. Dreyfus,et al.  What constitutes the signal for the initiation of protein synthesis on Escherichia coli mRNAs? , 1988, Journal of molecular biology.

[64]  K. Toma,et al.  Nucleotide sequences of the genes for two distinct cephalosporin acylases from a Pseudomonas strain , 1987, Journal of bacteriology.

[65]  P. Dehaseth,et al.  Promoter recognition by Escherichia coli RNA polymerase: effects of base substitutions in the -10 and -35 regions. , 1987, Biochemistry.

[66]  R. Schoner,et al.  Translation of a synthetic two-cistron mRNA in Escherichia coli. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[67]  J. Brosius,et al.  Spacing of the -10 and -35 regions in the tac promoter. Effect on its in vivo activity. , 1985, The Journal of biological chemistry.

[68]  K. Postle,et al.  Nucleotide sequence of the repressor gene of the TN10 tetracycline resistance determinant. , 1984, Nucleic acids research.

[69]  C. Yanofsky,et al.  A ribosome binding site sequence is necessary for efficient expression of the distal gene of a translationally-coupled gene pair. , 1984, Nucleic acids research.

[70]  D. Schümperli,et al.  Translational coupling at an intercistronic boundary of the Escherichia coli galactose operon , 1982, Cell.

[71]  D. Freedman,et al.  On the histogram as a density estimator:L2 theory , 1981 .

[72]  C. Yanofsky,et al.  Translational coupling during expression of the tryptophan operon of Escherichia coli. , 1980, Genetics.

[73]  J. Steitz Polypeptide Chain Initiation: Nucleotide Sequences of the Three Ribosomal Binding Sites in Bacteriophage R17 RNA , 1969, Nature.

[74]  Coleman Sellers,et al.  Steam-boiler explosion at messrs. Cornelius & Baker's manufactory, Philadelphia—Verdict of the Coroner's jury , 1864 .

[75]  Vivek K. Mutalik,et al.  Supplementary information for Rationally designed families of orthogonal RNA regulators of translation , 2012 .

[76]  Peter A Carr,et al.  Genome engineering , 2009, Nature Biotechnology.

[77]  Michael Zuker,et al.  UNAFold: software for nucleic acid folding and hybridization. , 2008, Methods in molecular biology.

[78]  S. Busby,et al.  Investigations of the modular structure of bacterial promoters. , 2006, Biochemical Society symposium.

[79]  T. Terwilliger,et al.  Engineering and characterization of a superfolder green fluorescent protein , 2006, Nature Biotechnology.

[80]  W. Liang,et al.  TM4 microarray software suite. , 2006, Methods in enzymology.

[81]  W. Liang,et al.  9) TM4 Microarray Software Suite , 2006 .

[82]  C. Gross,et al.  The functional and regulatory roles of sigma factors in transcription. , 1998, Cold Spring Harbor symposia on quantitative biology.

[83]  K. Sullivan Short protocols in molecular biology, 2nd Edn , 1992 .

[84]  M Lanzer,et al.  A T5 promoter-based transcription-translation system for the analysis of proteins in vitro and in vivo. , 1987, Methods in enzymology.

[85]  Christus,et al.  A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins , 2022 .