A Genome-wide CRISPR Screen in Toxoplasma Identifies Essential Apicomplexan Genes

Apicomplexan parasites are leading causes of human and livestock diseases such as malaria and toxoplasmosis, yet most of their genes remain uncharacterized. Here, we present the first genome-wide genetic screen of an apicomplexan. We adapted CRISPR/Cas9 to assess the contribution of each gene from the parasite Toxoplasma gondii during infection of human fibroblasts. Our analysis defines ∼200 previously uncharacterized, fitness-conferring genes unique to the phylum, from which 16 were investigated, revealing essential functions during infection of human cells. Secondary screens identify as an invasion factor the claudin-like apicomplexan microneme protein (CLAMP), which resembles mammalian tight-junction proteins and localizes to secretory organelles, making it critical to the initiation of infection. CLAMP is present throughout sequenced apicomplexan genomes and is essential during the asexual stages of the malaria parasite Plasmodium falciparum. These results provide broad-based functional information on T. gondii genes and will facilitate future approaches to expand the horizon of antiparasitic interventions.

[1]  Kevin M. Brown,et al.  Efficient Gene Disruption in Diverse Strains of Toxoplasma gondii Using CRISPR/CAS9 , 2014, mBio.

[2]  L. Sibley,et al.  Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii , 1999, Molecular microbiology.

[3]  T. Wellems,et al.  Genetic mapping of the chloroquine-resistance locus on Plasmodium falciparum chromosome 7. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[4]  Johannes E. Schindelin,et al.  Fiji: an open-source platform for biological-image analysis , 2012, Nature Methods.

[5]  D. Shaw,et al.  Allosteric activation of apicomplexan calcium-dependent protein kinases , 2015, Proceedings of the National Academy of Sciences.

[6]  K. Miura,et al.  Functional Analysis of the Leading Malaria Vaccine Candidate AMA-1 Reveals an Essential Role for the Cytoplasmic Domain in the Invasion Process , 2009, PLoS pathogens.

[7]  D. Soldati-Favre,et al.  Plasticity between MyoC- and MyoA-Glideosomes: An Example of Functional Compensation in Toxoplasma gondii Invasion , 2014, PLoS pathogens.

[8]  J. Ajioka,et al.  Polymorphic Secreted Kinases Are Key Virulence Factors in Toxoplasmosis , 2006, Science.

[9]  Sandeep Ravindran,et al.  Rapid Membrane Disruption by a Perforin-Like Protein Facilitates Parasite Exit from Host Cells , 2009, Science.

[10]  D. Soldati-Favre,et al.  Phosphatidic Acid-Mediated Signaling Regulates Microneme Secretion in Toxoplasma. , 2016, Cell host & microbe.

[11]  E. Koonin,et al.  Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. , 2002, Genome research.

[12]  Michael J. Blackman,et al.  Conditional U1 Gene Silencing in Toxoplasma gondii , 2014, bioRxiv.

[13]  N. Goldman,et al.  A codon-based model of nucleotide substitution for protein-coding DNA sequences. , 1994, Molecular biology and evolution.

[14]  Amsha Nahid,et al.  Mitochondrial metabolism of glucose and glutamine is required for intracellular growth of Toxoplasma gondii. , 2012, Cell host & microbe.

[15]  Kami Kim,et al.  Gene Set Enrichment Analysis (GSEA) of Toxoplasma gondii expression datasets links cell cycle progression and the bradyzoite developmental program , 2014, BMC Genomics.

[16]  K. Gull,et al.  A novel epitope tag system to study protein targeting and organelle biogenesis in Trypanosoma brucei. , 1996, Molecular and biochemical parasitology.

[17]  Michael S. Behnke,et al.  A Systematic Screen to Discover and Analyze Apicoplast Proteins Identifies a Conserved and Essential Protein Import Factor , 2011, PLoS pathogens.

[18]  P. Gilson,et al.  Toward forward genetic screens in malaria-causing parasites using the piggyBac transposon , 2011, BMC Biology.

[19]  Frank Schwach,et al.  A Genome-Scale Vector Resource Enables High-Throughput Reverse Genetic Screening in a Malaria Parasite , 2015, Cell host & microbe.

[20]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[21]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[22]  S. P. Kurup,et al.  CRISPR-Cas9-Mediated Single-Gene and Gene Family Disruption in Trypanosoma cruzi , 2014, mBio.

[23]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[24]  D. Roos,et al.  Variability and heritability of cell division pathways in Toxoplasma gondii , 2004, Journal of Cell Science.

[25]  D. Roos,et al.  Insertional mutagenesis and marker rescue in a protozoan parasite: cloning of the uracil phosphoribosyltransferase locus from Toxoplasma gondii. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. Huynh,et al.  Tagging of Endogenous Genes in a Toxoplasma gondii Strain Lacking Ku80 , 2009, Eukaryotic Cell.

[27]  R. Ménard,et al.  Host Cell Invasion by Apicomplexan Parasites: The Junction Conundrum , 2014, PLoS pathogens.

[28]  A. Brueggeman,et al.  Successful Transient Expression of Cas9 and Single Guide RNA Genes in Chlamydomonas reinhardtii , 2014, Eukaryotic Cell.

[29]  L. Sibley,et al.  Distinct signalling pathways control Toxoplasma egress and host‐cell invasion , 2012, The EMBO journal.

[30]  Yilong Li,et al.  Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library , 2013, Nature Biotechnology.

[31]  D. Roos,et al.  Stable molecular transformation of Toxoplasma gondii: a selectable dihydrofolate reductase-thymidylate synthase marker based on drug-resistance mutations in malaria. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Piontek,et al.  Structure and function of claudins. , 2008, Biochimica et biophysica acta.

[33]  Johannes Söding,et al.  Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling , 2015, PLoS Comput. Biol..

[34]  Chao Zhang,et al.  Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma , 2010, Nature.

[35]  J. Boothroyd,et al.  Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii , 1993, Science.

[36]  S. Yoshiura,et al.  Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion , 2017 .

[37]  Feng Chen,et al.  OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups , 2005, Nucleic Acids Res..

[38]  Michael S. Behnke,et al.  A Secreted Serine-Threonine Kinase Determines Virulence in the Eukaryotic Pathogen Toxoplasma gondii , 2006, Science.

[39]  Jeffry D. Sander,et al.  CRISPR-Cas systems for editing, regulating and targeting genomes , 2014, Nature Biotechnology.

[40]  L. S. Swapna,et al.  Local admixture of amplified and diversified secreted pathogenesis determinants shapes mosaic Toxoplasma gondii genomes , 2016, Nature Communications.

[41]  D. Soldati-Favre,et al.  Metabolic pathways in the apicoplast of apicomplexa. , 2010, International review of cell and molecular biology.

[42]  Hyungwon Choi,et al.  Gene Essentiality Is a Quantitative Property Linked to Cellular Evolvability , 2015, Cell.

[43]  Christopher J. Tonkin,et al.  An Overexpression Screen of Toxoplasma gondii Rab-GTPases Reveals Distinct Transport Routes to the Micronemes , 2013, PLoS pathogens.

[44]  E. Winzeler,et al.  Using genetic methods to define the targets of compounds with antimalarial activity. , 2013, Journal of medicinal chemistry.

[45]  George Rugarabamu,et al.  Plasticity and redundancy among AMA–RON pairs ensure host cell entry of Toxoplasma parasites , 2014, Nature Communications.

[46]  M. Falagas,et al.  Toxoplasmosis snapshots: global status of Toxoplasma gondii seroprevalence and implications for pregnancy and congenital toxoplasmosis. , 2009, International journal for parasitology.

[47]  L. Sibley,et al.  Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii , 1997, Molecular microbiology.

[48]  Neville E. Sanjana,et al.  Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells , 2014, Science.

[49]  N. D. Levine The Protozoan Phylum Apicomplexa: Volume 1 , 2017 .

[50]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  D. Soldati-Favre,et al.  Apicomplexan mitochondrial metabolism: a story of gains, losses and retentions. , 2008, Trends in parasitology.

[52]  J. Boothroyd,et al.  Molecular analysis of the gene encoding the major surface antigen of Toxoplasma gondii. , 1988, Journal of immunology.

[53]  E. Lander,et al.  Genetic Screens in Human Cells Using the CRISPR-Cas9 System , 2013, Science.

[54]  A. Craig,et al.  Exported Proteins Required for Virulence and Rigidity of Plasmodium falciparum-Infected Human Erythrocytes , 2008, Cell.

[55]  F. Frischknecht,et al.  Microneme protein 8 – a new essential invasion factor in Toxoplasma gondii , 2008, Journal of Cell Science.

[56]  J. Niles,et al.  Synthetic RNA–protein modules integrated with native translation mechanisms to control gene expression in malaria parasites , 2016, Nature Communications.

[57]  E. Lander,et al.  Identification and characterization of essential genes in the human genome , 2015, Science.

[58]  D. Wood,et al.  Secondary Mutations Correct Fitness Defects in Toxoplasma gondii With Dinitroaniline Resistance Mutations , 2008, Genetics.

[59]  J. V. Van Beeumen,et al.  The microneme protein MIC3 of Toxoplasma gondii is a secretory adhesin that binds to both the surface of the host cells and the surface of the parasite , 2000, Cellular microbiology.

[60]  J. Dubremetz,et al.  Characterization of microneme proteins of Toxoplasma gondii. , 1991, Molecular and biochemical parasitology.

[61]  István Reményi,et al.  CCTOP: a Consensus Constrained TOPology prediction web server , 2015, Nucleic Acids Res..

[62]  Ethanol and acetaldehyde elevate intracellular [Ca2+] and stimulate microneme discharge in Toxoplasma gondii. , 1999 .

[63]  Mark A. Miller,et al.  A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. , 2015, The Lancet. Infectious diseases.

[64]  N. Westwood,et al.  Efficient Genome Engineering of Toxoplasma gondii Using CRISPR/Cas9 , 2014, PloS one.

[65]  Weltgesundheitsorganisation World malaria report , 2005 .

[66]  Gabor T. Marth,et al.  Whole genome profiling of spontaneous and chemically induced mutations in Toxoplasma gondii , 2014, BMC Genomics.