Nonlinear local behaviours and numerical modeling of damping in civil engineering structures in dynamic

Assessment of safety margins related to a seismic risk in Civil Engineering requires the improvement of the predictive methods usually performed. The damping phenomena still remain a major source of uncertainty both at the structure and the constitutive material levels. However, the resistance of the said structure to an earthquake is strongly conditioned by its ability to store and to dissipate the energy introduced by the ground motion. Better modeling and evaluation of these effects are therefore essential for the seismic risk assessment. This thesis takes place in the framework of the RSNR SINAPS@ project whose main objective is the improvement of modeling tools allowing to appreciate the effects of an earthquake from the rupture of the fault to the vibratory behavior of the structures and amenities.

[1]  Donato Sabia,et al.  Non-linear Damping and Frequency Identification in a Progressively Damaged R.C. Element , 2011 .

[2]  Bruce R. Ellingwood,et al.  Seismic fragilities for non-ductile reinforced concrete frames – Role of aleatoric and epistemic uncertainties , 2010 .

[3]  F. Charney Unintended Consequences of Modeling Damping in Structures , 2008 .

[4]  Meng-Lin Lou,et al.  Structure–soil–structure interaction: Literature review , 2011 .

[5]  Farzad Naeim,et al.  Dynamics of Structures—Theory and Applications to Earthquake Engineering, Third Edition , 2007 .

[6]  Zbigniew Zembaty,et al.  Dynamic identification of a reinforced concrete frame in progressive states of damage , 2006 .

[7]  Sekhar Chandra Dutta,et al.  Review Article A critical review on idealization and modeling for interaction among soil-foundation-structure system , 2002 .

[8]  P. Franchetti,et al.  Nonlinear Damping Identification in Precast Prestressed Reinforced Concrete Beams , 2009, Comput. Aided Civ. Infrastructure Eng..

[9]  Polat Gülkan,et al.  INELASTIC RESPONSES OF REINFORCED CONCRETE STRUCTURES TO EARTHQUAKE MOTIONS , 1977 .

[10]  Rilem Determination of the fracture energy of mortar and concrete by means of three-point bend tests on notched beams , 1985 .

[11]  Zuhal Ozdemir,et al.  Application of nonlinear fluid–structure interaction methods to seismic analysis of anchored and unanchored tanks , 2010 .

[12]  Clotaire Michel,et al.  Dynamic parameters of structures extracted from ambient vibration measurements : An aid for the seismic vulnerability assessment of existing buildings in moderate seismic hazard regions , 2007, 0710.1210.

[13]  Ismael Herrera,et al.  On a Kind of Hysteretic Damping , 1964 .

[14]  Zdenek P. Bazant,et al.  FRACTURING TRUSS MODEL: SIZE EFFECT IN SHEAR FAILURE OF REINFORCED CONCRETE , 1997 .

[15]  Benjamin Richard,et al.  Experimental characterization and modeling of energy dissipation in reinforced concrete beams subjected to cyclic loading , 2013 .

[16]  Vitelmo V. Bertero,et al.  Local bond stress-slip relationships of deformed bars under generalized excitations , 1982 .

[17]  Alberto Carpinteri,et al.  Size effects on tensile fracture properties: a unified explanation based on disorder and fractality of concrete microstructure , 1994 .

[18]  Atef Daoud Etude expérimentale de la liaison entre l'acier et le béton autoplaçant : contribution à la modélisation numérique de l'interface , 2003 .

[19]  Pierre Jehel,et al.  A critical look into Rayleigh damping forces for seismic performance assessment of inelastic structures , 2014 .

[20]  E. Rozière,et al.  Size-independent fracture energy of concrete at very early ages by inverse analysis , 2013 .

[21]  Ricardo Perera,et al.  Identification of damage in RC beams using indexes based on local modal stiffness , 2008 .

[22]  Ivan Wang,et al.  An Analysis of Higher Order Effects in the Half Power Method for Calculating Damping , 2011 .

[23]  Angelo D'Ambrisi,et al.  Modeling of Cyclic Shear Behavior in RC Members , 1999 .

[24]  C. B. Crouse,et al.  Energy Dissipation in Soil-Structure Interaction , 2001 .

[25]  John F. Hall,et al.  Problems encountered from the use (or misuse) of Rayleigh damping , 2006 .

[26]  Ludovic Jason,et al.  Confinement effects on the steel–concrete bond strength and pull-out failure , 2013 .

[27]  L. Jacobsen Damping in Composite Structures , 1960 .

[28]  Angela Salzmann,et al.  Damping Characteristics of Reinforced and Prestressed Normal- and High-Strength Concrete Beams , 2003 .

[29]  F. Ragueneau,et al.  Continuum damage mechanics based model for quasi brittle materials subjected to cyclic loadings: Formulation, numerical implementation and applications , 2013 .

[30]  Howard Rosenbaum,et al.  Effects of reading proficiency on embedded stem priming in primary school children , 2021 .

[31]  Wilfred D. Iwan,et al.  The effective period and damping of a class of hysteretic structures , 1979 .

[32]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[33]  F. Ragueneau Fonctionnement dynamique des structures en béton : influence des comportements hystériques locaux , 1999 .

[34]  Stéphane Roux,et al.  Estimation of Elastoplastic Parameters via Weighted FEMU and Integrated-DIC , 2015 .

[35]  S. Roux,et al.  Identification of a crack propagation law by digital image correlation , 2012 .

[36]  Shunsuke Otani,et al.  Nonlinear dynamic analysis of reinforced concrete building structures , 1980 .

[37]  J. F. Hall The dynamic and earthquake behaviour of concrete dams: review of experimental behaviour and observational evidence , 1988 .

[38]  Olivier Maurel,et al.  2D mesoscopic modelling of bar–concrete bond , 2013 .

[39]  Alberto Carpinteri,et al.  Multifractal nature of concrete fracture surfaces and size effects on nominal fracture energy , 1995 .

[40]  Giorgio Monti,et al.  Nonlinear Cyclic Behavior of Reinforcing Bars Including Buckling , 1992 .

[41]  Ali Mikael,et al.  Evaluation des paramètres physiques des bâtiments : amortissement, fréquence et modes de comportement des structures de génie civil : approche expérimentale , 2011 .

[42]  A. Correia,et al.  Seismic Energy Dissipation in Inelastic Frames: Understanding State-of-the-Practice Damping Models , 2013 .

[43]  F. Ragueneau,et al.  How are the equivalent damping ratios modified by nonlinear engineering demand parameters , 2017 .

[44]  Chanakya Arya,et al.  Eurocodes 2: Design of concrete structures , 2009 .

[45]  Benjamin Richard,et al.  Dissipations in reinforced concrete components: Static and dynamic experimental identification strategy , 2018 .

[46]  François Dunand Pertinence du bruit de fond sismique pour la caractérisation dynamique et l'aide au diagnostic sismique des structures de génie civil , 2005 .

[47]  Stéphane Roux,et al.  Digital Volume Correlation Applied to X‐ray Tomography Images from Spherical Indentation Tests on Lightweight Gypsum , 2014 .

[48]  Z. Bažant Size Effect in Blunt Fracture: Concrete, Rock, Metal , 1984 .

[49]  Paul Reynolds,et al.  Impulse hammer versus shaker excitation for the modal testing of building floors , 2000 .

[50]  T. P. Tassios,et al.  Experimental validation of seismic code provisions for RC columns , 2007 .

[51]  Stéphane Roux,et al.  Damage measurements via DIC , 2015, International Journal of Fracture.

[52]  J. C. Asmussen,et al.  Modal Analysis Based on the Random Decrement Technique: application to civil engineering structures , 1997 .

[53]  H. A. Cole,et al.  On-line failure detection and damping measurement of aerospace structures by random decrement signatures , 1973 .

[54]  Franccois Hild,et al.  Digital Image Correlation: from Displacement Measurement to Identification of Elastic Properties – a Review , 2006 .

[55]  Eleni Smyrou,et al.  Modelling of elastic damping in nonlinear time-history analyses of cantilever RC walls , 2011 .

[56]  Zdenek P. Bazant,et al.  FRACTURE IN CONCRETE AND REINFORCED CONCRETE. , 1983 .

[57]  Yi-Ben Tsai,et al.  Observed Natural Frequencies, Damping Ratios, and Mode Shapes of Vibration of a 30-Story Building Excited by a Major Earthquake and Typhoon , 2010 .

[58]  Stephen J. Wright,et al.  Primal-Dual Interior-Point Methods , 1997 .

[59]  Thomas G. Brown,et al.  Hysteretic energy and damping capacity of flexural elements constructed with different concrete strengths , 2010 .

[60]  Y. Sieffert,et al.  ENHANCEMENT OF MULTIFIBER BEAM ELEMENTS IN THE CASE OF REINFORCED CONCRETE STRUCTURES FOR TAKING INTO ACCOUNT THE LATERAL CONFINEMENT OF CONCRETE DUE TO STIRRUP , 2017 .

[61]  R. Capozucca,et al.  Static and dynamic response of damaged RC beams strengthened with NSM CFRP rods , 2009 .

[62]  E. P. Popov,et al.  Seismic Behavior of Ductile Moment-Resisting Reinforced Cocnrete Frames , 1977 .

[63]  Vasco Teixeira,et al.  The use of pseudo-dynamic method in the evaluation of damping characteristics in reinforced concrete beams having variable bending stiffness , 2006 .

[64]  Stéphane Roux,et al.  Optimization of a Cruciform Specimen Geometry for the Identification of Constitutive Parameters Based Upon Full‐Field Measurements , 2016 .

[65]  Stéphane Grange,et al.  A multifiber beam model coupling torsional warping and damage for reinforced concrete structures , 2016 .

[66]  Hojjat Adeli,et al.  Tuned Mass Dampers , 2013 .

[67]  Ahsan Kareem,et al.  Damping in structures: its evaluation and treatment of uncertainty , 1996 .

[68]  Yew-Chaye Loo,et al.  The Damping Analysis of Experimental Concrete Beams under Free-Vibration , 2003 .

[69]  Paul C. Jennings,et al.  Equivalent Viscous Damping for Yielding Structures , 1968 .

[70]  R. Hill Elastic properties of reinforced solids: some theoretical principles , 1963 .

[71]  George D. Hatzigeorgiou,et al.  On the use of the half-power bandwidth method to estimate damping in building structures , 2011 .

[72]  Eduardo Miranda,et al.  Evaluation of Damping Ratios for the Seismic Analysis of Tall Buildings , 2017 .

[73]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[74]  Lorenza Petrini,et al.  Experimental Verification of Viscous Damping Modeling for Inelastic Time History Analyzes , 2008 .

[75]  Jinkook Kim,et al.  Evaluation of equivalent damping ratio of a structure with added dampers , 2004 .

[76]  Yukio Tamura,et al.  Damping Evaluation Using Full-Scale Data of Buildings in Japan , 2003 .

[77]  Aníbal Costa,et al.  A comparative analysis of energy dissipation and equivalent viscous damping of RC columns subjected to uniaxial and biaxial loading , 2012 .

[78]  Hugo Bachmann,et al.  Displacement ductility and energy assessment from shaking table tests on RC structural walls , 2007 .

[79]  Pierre Jehel,et al.  Initial versus tangent stiffness‐based Rayleigh damping in inelastic time history seismic analyses , 2013, 1309.2741.

[80]  James O. Jirsa,et al.  REINFORCED CONCRETE BEAMS UNDER LOAD REVERSALS , 1971 .

[81]  F. Hild,et al.  Identification d'une loi d'endommagement de plâtre à partir de mesures de champs de déplacements , 2013 .

[82]  Stéphane Roux,et al.  Displacement measurement technique for beam kinematics , 2009 .

[83]  Z. P. Bažant,et al.  Size effect on structural strength: a review , 1999 .

[84]  Pierre Léger,et al.  Seismic-Energy Dissipation in MDOF Structures , 1992 .

[85]  M. Menegotto Method of Analysis for Cyclically Loaded R. C. Plane Frames Including Changes in Geometry and Non-Elastic Behavior of Elements under Combined Normal Force and Bending , 1973 .

[86]  Ahsan Kareem,et al.  Mitigation of motions of tall buildings with specific examples of recent applications , 1999 .

[87]  Graham H. Powell,et al.  Displacement-Based Seismic Design of Structures , 2008 .

[88]  J. Luco,et al.  Optimal Caughey series representation of classical damping matrices , 2017 .

[89]  Neda Baghiee,et al.  Studies on damage and FRP strengthening of reinforced concrete beams by vibration monitoring , 2009 .

[90]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[91]  T. Caughey,et al.  Classical Normal Modes in Damped Linear Dynamic Systems , 1960 .

[92]  R. Clough,et al.  Dynamics Of Structures , 1975 .