Explainable multi-task learning for multi-modality biological data analysis

[1]  Jia Liu,et al.  Multimodal charting of molecular and functional cell states via in situ electro-sequencing , 2023, Cell.

[2]  Alexander P. Wu,et al.  Granger causal inference on DAGs identifies genomic loci regulating transcription , 2022, ICLR.

[3]  William E. Allen,et al.  Cell-type-specific population dynamics of diverse reward computations , 2022, Cell.

[4]  Hongkui Zeng What is a cell type and how to define it? , 2022, Cell.

[5]  Lani F. Wu,et al.  Integrative spatial analysis of cell morphologies and transcriptional states with MUSE , 2022, Nature Biotechnology.

[6]  Mingyao Li,et al.  SpaGCN: Integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network , 2021, Nature Methods.

[7]  Y. Saeys,et al.  Spearheading future omics analyses using dyngen, a multi-modal simulator of single cells , 2021, Nature Communications.

[8]  J. Marioni,et al.  Computational principles and challenges in single-cell data integration , 2021, Nature Biotechnology.

[9]  B. Berger,et al.  Schema: metric learning enables interpretable synthesis of heterogeneous single-cell modalities , 2021, Genome Biology.

[10]  H. Nakaya,et al.  Kdm6b Regulates the Generation of Effector CD8+ T Cells by Inducing Chromatin Accessibility in Effector-Associated Genes , 2021, The Journal of Immunology.

[11]  J. Shu,et al.  ClusterMap: multi-scale clustering analysis of spatial gene expression , 2021, bioRxiv.

[12]  Aaron M. Streets,et al.  Joint probabilistic modeling of single-cell multi-omic data with totalVI , 2021, Nature Methods.

[13]  Michael I. Jordan,et al.  Probabilistic harmonization and annotation of single‐cell transcriptomics data with deep generative models , 2021, Molecular systems biology.

[14]  V. Marx Method of the Year: spatially resolved transcriptomics , 2021, Nature Methods.

[15]  Howard Y. Chang,et al.  BABEL enables cross-modality translation between multiomic profiles at single-cell resolution , 2020, Proceedings of the National Academy of Sciences.

[16]  Cindy C. Guo,et al.  High-Spatial-Resolution Multi-Omics Sequencing via Deterministic Barcoding in Tissue , 2020, Cell.

[17]  Brian R. Lee,et al.  Integrated Morphoelectric and Transcriptomic Classification of Cortical GABAergic Cells , 2020, Cell.

[18]  Srinivas C. Turaga,et al.  Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles , 2020, Science.

[19]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[20]  R. Aharonov,et al.  A Survey of the State of Explainable AI for Natural Language Processing , 2020, AACL.

[21]  Nathan W. Gouwens,et al.  Consistent cross-modal identification of cortical neurons with coupled autoencoders , 2020, Nature Computational Science.

[22]  Peng Gao,et al.  Reconstruction Regularized Deep Metric Learning for Multi-Label Image Classification , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[23]  J. Marioni,et al.  MOFA+: a statistical framework for comprehensive integration of multi-modal single-cell data , 2020, Genome Biology.

[24]  J. Kleinman,et al.  Transcriptome-scale spatial gene expression in the human dorsolateral prefrontal cortex , 2020, Nature Neuroscience.

[25]  Method of the Year 2019: Single-cell multimodal omics , 2020, Nature Methods.

[26]  Hugh Chen,et al.  From local explanations to global understanding with explainable AI for trees , 2020, Nature Machine Intelligence.

[27]  S. Preissl,et al.  Single-cell multimodal omics: the power of many , 2020, Nature Methods.

[28]  Anastasiya Belyaeva,et al.  Multi-domain translation between single-cell imaging and sequencing data using autoencoders , 2019, Nature Communications.

[29]  Hongkui Zeng,et al.  A coupled autoencoder approach for multi-modal analysis of cell types , 2019, NeurIPS.

[30]  Concha Bielza,et al.  A community-based transcriptomics classification and nomenclature of neocortical cell types , 2019, Nature Neuroscience.

[31]  A. Iwama,et al.  KDM2B in polycomb repressive complex 1.1 functions as a tumor suppressor in the initiation of T-cell leukemogenesis. , 2019, Blood advances.

[32]  Cuntai Guan,et al.  A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[33]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[34]  Fabian J Theis,et al.  Current best practices in single‐cell RNA‐seq analysis: a tutorial , 2019, Molecular systems biology.

[35]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[36]  V. Cerundolo,et al.  Precise tuning of gene expression levels in mammalian cells , 2019, Nature Communications.

[37]  Michael Kampffmeyer,et al.  Deep Divergence-Based Approach to Clustering , 2019, Neural Networks.

[38]  Qiuyu Zhu,et al.  A Classification Supervised Auto-Encoder Based on Predefined Evenly-Distributed Class Centroids , 2019, ArXiv.

[39]  Fabian J Theis,et al.  Single-cell RNA-seq denoising using a deep count autoencoder , 2019, Nature Communications.

[40]  Vincent A. Traag,et al.  From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.

[41]  Scott M. Lundberg,et al.  Explainable machine-learning predictions for the prevention of hypoxaemia during surgery , 2018, Nature Biomedical Engineering.

[42]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[43]  William E. Allen,et al.  Three-dimensional intact-tissue sequencing of single-cell transcriptional states , 2018, Science.

[44]  Wenan Chen,et al.  UMI-count modeling and differential expression analysis for single-cell RNA sequencing , 2018, Genome Biology.

[45]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[46]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[47]  S. Teichmann,et al.  SpatialDE: identification of spatially variable genes , 2018, Nature Methods.

[48]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[49]  Athanasia G. Palasantza,et al.  Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq , 2015, Nature Biotechnology.

[50]  Alexander S. Ecker,et al.  Principles of connectivity among morphologically defined cell types in adult neocortex , 2015, Science.

[51]  Qing-Yu He,et al.  ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization , 2015, Bioinform..

[52]  Howard Y. Chang,et al.  ATAC‐seq: A Method for Assaying Chromatin Accessibility Genome‐Wide , 2015, Current protocols in molecular biology.

[53]  Martin Luessi,et al.  MEG and EEG data analysis with MNE-Python , 2013, Front. Neuroinform..

[54]  J. Leighton,et al.  T cell-derived protein S engages TAM receptor signaling in dendritic cells to control the magnitude of the immune response. , 2013, Immunity.

[55]  R. Aldrich,et al.  BK potassium channel modulation by leucine-rich repeat-containing proteins , 2012, Proceedings of the National Academy of Sciences.

[56]  Ning Gu,et al.  BK potassium channels facilitate high‐frequency firing and cause early spike frequency adaptation in rat CA1 hippocampal pyramidal cells , 2007, The Journal of physiology.

[57]  N. Wermuth,et al.  A Comment on the Coefficient of Determination for Binary Responses , 1992 .