Illumination and Reflectance Estimation with its Application in Foreground Detection

In this paper, we introduce a novel approach to estimate the illumination and reflectance of an image. The approach is based on illumination-reflectance model and wavelet theory. We use a homomorphic wavelet filter (HWF) and define a wavelet quotient image (WQI) model based on dyadic wavelet transform. The illumination and reflectance components are estimated by using HWF and WQI, respectively. Based on the illumination and reflectance estimation we develop an algorithm to segment sows in grayscale video recordings which are captured in complex farrowing pens. Experimental results demonstrate that the algorithm can be applied to detect the domestic animals in complex environments such as light changes, motionless foreground objects and dynamic background.

[1]  A. Oppenheim,et al.  Nonlinear filtering of multiplied and convolved signals , 1968 .

[2]  Shireen Elhabian,et al.  Moving Object Detection in Spatial Domain using Background Removal Techniques - State-of-Art , 2008 .

[3]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[4]  Ferdinand van der Heijden,et al.  Recursive unsupervised learning of finite mixture models , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Haitao Wang,et al.  Face recognition under varying lighting conditions using self quotient image , 2004, Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004. Proceedings..

[6]  Hongwei Xin,et al.  A real-time computer vision assessment and control of thermal comfort for group-housed pigs , 2008 .

[7]  Stéphane Mallat,et al.  Characterization of Signals from Multiscale Edges , 2011, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  R. D. Tillett,et al.  Using model-based image processing to track animal movements , 1997 .

[9]  Bertrand Vachon,et al.  Statistical Background Modeling for Foreground Detection: A Survey , 2010 .

[10]  Nigel J. B. McFarlane,et al.  Segmentation and tracking of piglets in images , 1995, Machine Vision and Applications.

[11]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[12]  J Hu,et al.  Image-processing algorithms for behavior analysis of group-housed pigs , 2000, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[13]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[14]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Bernd Klauer,et al.  GPU-Based Translation-Invariant 2D Discrete Wavelet Transform for Image Processing , 2011 .

[16]  Wen Gao,et al.  Illumination transfer using homomorphic wavelet filtering and its application to light-insensitive face recognition , 2008, 2008 8th IEEE International Conference on Automatic Face & Gesture Recognition.

[17]  David Lowe,et al.  A Generative Model for Separating Illumination and Reflectance from Images , 2003, J. Mach. Learn. Res..

[18]  Suresh Kumar Thakur Comparison of Filters used for Underwater Image Pre-Processing , 2010 .

[19]  Thierry Bouwmans,et al.  Recent Advanced Statistical Background Modeling for Foreground Detection - A Systematic Survey , 2011 .

[20]  Wilhelm Burger,et al.  Digital Image Processing - An Algorithmic Introduction using Java , 2008, Texts in Computer Science.

[21]  Manish Khare,et al.  Moving object segmentation in Daubechies complex wavelet domain , 2015, Signal Image Video Process..

[22]  A. Oppenheim,et al.  Nonlinear filtering of multiplied and convolved signals , 1968 .

[23]  Benjamin Höferlin,et al.  Evaluation of background subtraction techniques for video surveillance , 2011, CVPR 2011.

[24]  Amnon Shashua,et al.  The Quotient Image: Class-Based Re-Rendering and Recognition with Varying Illuminations , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Hanumant Singh,et al.  Towards High-resolution Imaging from Underwater Vehicles , 2007, Int. J. Robotics Res..

[26]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[27]  Michael Vinther,et al.  Validation of a digital video tracking system for recording pig locomotor behaviour , 2005, Journal of Neuroscience Methods.

[28]  Thierry Bouwmans,et al.  Background Modeling using Mixture of Gaussians for Foreground Detection - A Survey , 2008 .

[29]  Til Aach,et al.  Illumination-invariant change detection , 2000, 4th IEEE Southwest Symposium on Image Analysis and Interpretation.

[30]  Thierry Bouwmans,et al.  Subspace Learning for Background Modeling: A Survey , 2009 .

[31]  Liyuan Li,et al.  Integrating intensity and texture differences for robust change detection , 2002, IEEE Trans. Image Process..

[32]  Torben Gregersen,et al.  Original papers: Development of a real-time computer vision system for tracking loose-housed pigs , 2011 .

[33]  Haitao Wang,et al.  Generalized quotient image , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[34]  Fang-Hsuan Cheng,et al.  Real time multiple objects tracking and identification based on discrete wavelet transform , 2006, Pattern Recognit..

[35]  Petra Perner,et al.  Motion Tracking of Animals for Behavior Analysis , 2001, IWVF.

[36]  David W. Jacobs,et al.  In search of illumination invariants , 2001, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[37]  Weixing Zhu,et al.  Foreground detection of group-housed pigs based on the combination of Mixture of Gaussians using prediction mechanism and threshold segmentation , 2014 .