Rotary-bending fatigue characteristics of medical-grade Nitinol wire.

[1]  John A. Shaw,et al.  Tension, compression, and bending of superelastic shape memory alloy tubes , 2014 .

[2]  Aaron P. Stebner,et al.  Explicit finite element implementation of an improved three dimensional constitutive model for shape memory alloys , 2013 .

[3]  S. W. Robertson,et al.  Mechanical fatigue and fracture of Nitinol , 2012 .

[4]  S. W. Robertson,et al.  Impact of thermomechanical texture on the superelastic response of Nitinol implants. , 2011, Journal of the mechanical behavior of biomedical materials.

[5]  A. Pelton,et al.  Nitinol Fatigue: A Review of Microstructures and Mechanisms , 2011, Journal of Materials Engineering and Performance.

[6]  S. W. Robertson,et al.  Fatigue and durability of Nitinol stents. , 2008, Journal of the mechanical behavior of biomedical materials.

[7]  Ya Shen,et al.  Does electropolishing improve the low-cycle fatigue behavior of a nickel-titanium rotary instrument in hypochlorite? , 2007, Journal of endodontics.

[8]  R. Ritchie,et al.  Understanding the Deformation and Fracture of Nitinol Endovascular Stents Using In Situ Synchrotron X‐Ray Microdiffraction , 2007 .

[9]  G. Eggeler,et al.  New aspects of bending rotation fatigue in ultra-fine-grained pseudo-elastic NiTi wires , 2006 .

[10]  Gunther Eggeler,et al.  Stress and strain states in a pseudoelastic wire subjected to bending rotation , 2006 .

[11]  W. Schmahl,et al.  Space group and crystal structure of the R-phase in binary NiTi shape memory alloys , 2006 .

[12]  B. M. Gonzalez,et al.  Physical and mechanical characterization and the influence of cyclic loading on the behaviour of nickel-titanium wires employed in the manufacture of rotary endodontic instruments. , 2005, International endodontic journal.

[13]  X. Ren,et al.  Physical metallurgy of Ti–Ni-based shape memory alloys , 2005 .

[14]  K. V. Van Vliet,et al.  Predicting in vivo failure of pseudoelastic NiTi devices under low cycle, high amplitude fatigue. , 2005, Journal of biomedical materials research. Part B, Applied biomaterials.

[15]  Tom Duerig,et al.  Self-expanding nitinol stents: material and design considerations , 2004, European Radiology.

[16]  A. Pelton,et al.  A guide to shape memory and superelasticity in Nitinol medical devices , 2004, Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for Minimally Invasive Therapy.

[17]  G. Eggeler,et al.  Crack initiation and propagation in 50.9 at. pct Ni-Ti pseudoelastic shape-memory wires in bending-rotation fatigue , 2003 .

[18]  S. A. Thompson An overview of nickel-titanium alloys used in dentistry. , 2000, International endodontic journal.

[19]  A. Pelton,et al.  Optimisation of processing and properties of medical grade Nitinol wire , 2000 .

[20]  A. Pelton,et al.  An overview of nitinol medical applications , 1999 .

[21]  Shuichi Miyazaki,et al.  Fatigue life of Ti–50 at.% Ni and Ti–40Ni–10Cu (at.%) shape memory alloy wires , 1999 .

[22]  Ken Gall,et al.  Tension–compression asymmetry of the stress–strain response in aged single crystal and polycrystalline NiTi , 1999 .

[23]  Ken Gall,et al.  The role of texture in tension–compression asymmetry in polycrystalline NiTi , 1999 .

[24]  T. Buchheit,et al.  Predicting the orientation-dependent stress-induced transformation and detwinning response of shape memory alloy single crystals , 1996 .

[25]  A. Pelton,et al.  The Bending Behavior of NiTi , 1995 .

[26]  B. T. Berg,et al.  Bending of Superelastic Wires, Part I: Experimental Aspects , 1995 .

[27]  T. Buchheit,et al.  Modeling the effects of stress state and crystal orientation on the stress-induced transformation of NiTi single crystals , 1994 .

[28]  Yinong Liu,et al.  Thermodynamic analysis of the martensitic transformation in NiTi—I. Effect of heat treatment on transformation behaviour , 1994 .

[29]  Yinong Liu,et al.  Thermodynamic analysis of the martensitic transformation in NiTi—II. Effect of transformation cycling , 1994 .

[30]  E. Patoor,et al.  INTERNAL STRESS EFFECT IN THE SHAPE MEMORY BEHAVIOUR , 1991 .

[31]  T. Atanacković,et al.  Moment-curvature relations for a pseudoelastic beam , 1989 .

[32]  S. Manson,et al.  Thermal Stress and Low-Cycle Fatigue , 2020, Encyclopedia of Continuum Mechanics.

[33]  J. DiCello,et al.  Carbon and Oxygen Levels in Nitinol Alloys and the Implications for Medical Device Manufacture and Durability , 2008 .

[34]  Guna S Selvaduray,et al.  The Effects of Cold Work and Heat Treatment on the Properties of Nitinol Wire , 2007 .

[35]  J. Sheriff HYDROGEN EFFECTS ON NITINOL FATIGUE , 2006 .

[36]  Y. Gong,et al.  BENDING FATIGUE CHARACTERISTICS OF NITINOL , 2006 .

[37]  A. Nikanorov,et al.  Biomechanical Forces in the Femoropopliteal Arterial Segment , 2005 .

[38]  A. Nikanorov,et al.  Biomechanical Forces in the Femoropopliteal Arterial Segment What happens during extremity movement and what is the effect on stenting , 2005 .

[39]  S. Suresh Fatigue of materials , 1991 .

[40]  S. Timoshenko,et al.  Mechanics of Materials, 3rd Ed. , 1991 .

[41]  K. N. Melton,et al.  Fatigue of NITI thermoelastic martensites , 1979 .

[42]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[43]  O. Basquin The exponential law of endurance tests , 1910 .