The density of states in a quasi-gap

This dissertation studies the asymptotic behavior for the integrated density of states function for operators associated with the propagation of classical waves in a high-contrast, periodic, two-component medium. Consider a domain ri!+ contained in the hypercube [0, 27r)"'. We define a function Xt which takes the value 1 in and the value r in [0, 27r)"' \ Q+. We extend this setup periodically to R" and define the operator = — Vxi-V. As r —»• oo, it is known that the spectrum of Lr exhibits a band-gap structure and that the spectral density accumulates at the upper endpoints of the bands. We estabUsh the existence and some important properties of a rescaled integrated density of states function in the large couphng limit which describes the non-trivial asymptotic behavior of this spectral accumulation.

[1]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[2]  Jeffrey H. Albert,et al.  Generic properties of eigenfunctions of elliptic partial differential operators , 1978 .

[3]  Karen K. Uhlenbeck Generic Properties of Eigenfunctions , 1976 .

[4]  G. V. Chester,et al.  Solid State Physics , 2000 .

[5]  J. Dow,et al.  Electronic Properties of Crystalline Solids , 1975 .

[6]  Alexander Figotin,et al.  Band-Gap Structure of Spectra of Periodic Dielectric and Acoustic Media. I. Scalar Model , 1996, SIAM J. Appl. Math..

[7]  Leonid Friedlander,et al.  Some inequalities between Dirichlet and neumann eigenvalues , 1991 .

[8]  L. Friedlander ON THE DENSITY OF STATES OF PERIODIC MEDIA IN THE LARGE COUPLING LIMIT , 2002 .

[9]  R. Bube Electronic Properties of Crystalline Solids: An Introduction to Fundamentals , 1974 .

[10]  R. A. Silverman,et al.  Theory of Functions of a Complex Variable , 1968 .

[11]  W. Burnside Theory of Functions of a Complex Variable , 1893, Nature.

[12]  P. H. Müller,et al.  T. Kato, Perturbation theory for linear operators. (Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band 132) XX + 592 S. m. 3 Fig. Berlin/Heidelberg/New York Springer-Verlag. Preis geb. DM 79,20 , 1967 .

[13]  Tosio Kato Perturbation theory for linear operators , 1966 .

[14]  Barry Simon,et al.  Analysis of Operators , 1978 .

[15]  G. Floquet,et al.  Sur les équations différentielles linéaires à coefficients périodiques , 1883 .

[16]  R. Hempel,et al.  Spectral properties of periodic media in the large coupling limit , 1999 .

[17]  P. Kuchment Floquet Theory for Partial Differential Equations , 1993 .

[18]  F. Bloch Über die Quantenmechanik der Elektronen in Kristallgittern , 1929 .