Waveform Design for Secure SISO Transmissions and Multicasting

Wireless physical-layer security is an emerging field of research aiming at preventing eavesdropping in an open wireless medium. In this paper, we propose a novel waveform design approach to minimize the likelihood that a message transmitted between trusted single-antenna nodes is intercepted by an eavesdropper. In particular, with knowledge first of the eavesdropper's channel state information (CSI), we find the optimum waveform and transmit energy that minimize the signal-to-interference-plus-noise ratio (SINR) at the output of the eavesdropper's maximum-SINR linear filter, while at the same time provide the intended receiver with a required pre-specified SINR at the output of its own max-SINR filter. Next, if prior knowledge of the eavesdropper's CSI is unavailable, we design a waveform that maximizes the amount of energy available for generating disturbance to eavesdroppers, termed artificial noise (AN), while the SINR of the intended receiver is maintained at the pre-specified level. The extensions of the secure waveform design problem to multiple intended receivers are also investigated and semidefinite relaxation (SDR) -an approximation technique based on convex optimization- is utilized to solve the arising NP-hard design problems. Extensive simulation studies confirm our analytical performance predictions and illustrate the benefits of the designed waveforms on securing single-input single-output (SISO) transmissions and multicasting.

[1]  Roy D. Yates,et al.  Secret Communication via Multi-antenna Transmission , 2007, 2007 41st Annual Conference on Information Sciences and Systems.

[2]  Tijl De Bie,et al.  Eigenproblems in Pattern Recognition , 2005 .

[3]  Byung-Jae Kwak,et al.  LDPC Codes for the Gaussian Wiretap Channel , 2009, IEEE Transactions on Information Forensics and Security.

[4]  Carl D. Meyer,et al.  Matrix Analysis and Applied Linear Algebra , 2000 .

[5]  Miguel R. D. Rodrigues,et al.  Secrecy Capacity of Wireless Channels , 2006, 2006 IEEE International Symposium on Information Theory.

[6]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[7]  Roy D. Yates,et al.  Secret Communication with a Fading Eavesdropper Channel , 2007, 2007 IEEE International Symposium on Information Theory.

[8]  Sennur Ulukus,et al.  Achievable Rates in Gaussian MISO Channels with Secrecy Constraints , 2007, 2007 IEEE International Symposium on Information Theory.

[9]  A. Robert Calderbank,et al.  Applications of LDPC Codes to the Wiretap Channel , 2004, IEEE Transactions on Information Theory.

[10]  Roy D. Yates,et al.  Secrecy capacity of independent parallel channels , 2009 .

[11]  Shlomo Shamai,et al.  A Note on the Secrecy Capacity of the Multiple-Antenna Wiretap Channel , 2007, IEEE Transactions on Information Theory.

[12]  Yiyang Pei,et al.  Robust Beamforming Design: From Cognitive Radio MISO Channels to Secrecy MISO Channels , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[13]  Ying-Chang Liang,et al.  On the relationship between the multi-antenna secrecy communications and cognitive radio communications , 2009 .

[14]  Ming Li,et al.  Cognitive code-division channelization with blind primary-system identification , 2010, 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE.

[15]  Nan Liu,et al.  Towards the Secrecy Capacity of the Gaussian MIMO Wire-Tap Channel: The 2-2-1 Channel , 2007, IEEE Transactions on Information Theory.

[16]  Athina P. Petropulu,et al.  On Ergodic Secrecy Rate for Gaussian MISO Wiretap Channels , 2011, IEEE Transactions on Wireless Communications.

[17]  Rohit Negi,et al.  Guaranteeing Secrecy using Artificial Noise , 2008, IEEE Transactions on Wireless Communications.

[18]  Dimitris A. Pados,et al.  Cognitive Code-Division Channelization , 2011, IEEE Transactions on Wireless Communications.

[19]  Hesham El Gamal,et al.  On the Secrecy Capacity of Fading Channels , 2006, 2007 IEEE International Symposium on Information Theory.

[20]  Shlomo Shamai,et al.  An MMSE Approach to the Secrecy Capacity of the MIMO Gaussian Wiretap Channel , 2009, 2009 IEEE International Symposium on Information Theory.

[21]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[22]  Hyuckjae Lee,et al.  Bounds on Secrecy Capacity Over Correlated Ergodic Fading Channels at High SNR , 2011, IEEE Transactions on Information Theory.

[23]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[24]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[25]  Zhi-Quan Luo,et al.  Semidefinite Relaxation of Quadratic Optimization Problems , 2010, IEEE Signal Processing Magazine.

[26]  Daniel Pérez Palomar,et al.  Rank-Constrained Separable Semidefinite Programming With Applications to Optimal Beamforming , 2010, IEEE Transactions on Signal Processing.

[27]  A. Lee Swindlehurst,et al.  Robust Beamforming for Security in MIMO Wiretap Channels With Imperfect CSI , 2010, IEEE Transactions on Signal Processing.

[28]  H. Vincent Poor,et al.  Multiple-Access Channels With Confidential Messages , 2008, IEEE Transactions on Information Theory.

[29]  Ming Li,et al.  Cognitive Code-Division Links with Blind Primary-System Identification , 2011, IEEE Transactions on Wireless Communications.

[30]  Yonina C. Eldar,et al.  Strong Duality in Nonconvex Quadratic Optimization with Two Quadratic Constraints , 2006, SIAM J. Optim..

[31]  Dimitris A. Pados,et al.  Cognitive CDMA channelization , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[32]  Ami Wiesel,et al.  On the Gaussian MIMO Wiretap Channel , 2007, 2007 IEEE International Symposium on Information Theory.

[33]  Gregory W. Wornell,et al.  Secure Broadcasting Over Fading Channels , 2008, IEEE Transactions on Information Theory.

[34]  H. Vincent Poor,et al.  Secrecy Capacity Region of a Multiple-Antenna Gaussian Broadcast Channel With Confidential Messages , 2007, IEEE Transactions on Information Theory.

[35]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas—Part II: The MIMOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[36]  Shlomo Shamai,et al.  Secure Communication Over Fading Channels , 2007, IEEE Transactions on Information Theory.

[37]  Frédérique E. Oggier,et al.  The secrecy capacity of the MIMO wiretap channel , 2007, 2008 IEEE International Symposium on Information Theory.

[38]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas I: The MISOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[39]  Richard E. Blahut,et al.  Secrecy capacity of SIMO and slow fading channels , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[40]  Shuguang Cui,et al.  On the relationship between the multi-antenna secrecy communications and cognitive radio communications , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[41]  A. Lee Swindlehurst,et al.  Fixed SINR solutions for the MIMO wiretap channel , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[42]  Matthieu R. Bloch,et al.  Wireless Information-Theoretic Security , 2008, IEEE Transactions on Information Theory.

[43]  Ender Tekin,et al.  Achievable Rates for the General Gaussian Multiple Access Wire-Tap Channel with Collective Secrecy , 2006, ArXiv.

[44]  Chong-Yung Chi,et al.  QoS-Based Transmit Beamforming in the Presence of Eavesdroppers: An Optimized Artificial-Noise-Aided Approach , 2011, IEEE Transactions on Signal Processing.