Some new aspects of taxicab correspondence analysis

Correspondence analysis (CA) and nonsymmetric correspondence analysis are based on generalized singular value decomposition, and, in general, they are not equivalent. Taxicab correspondence analysis (TCA) is a $$\hbox {L}_{1}$$L1 variant of CA, and it is based on the generalized taxicab singular value decomposition (GTSVD). Our aim is to study the taxicab variant of nonsymmetric correspondence analysis. We find that for diagonal metric matrices GTSVDs of a given data set are equivalent; from which we deduce the equivalence of TCA and taxicab nonsymmetric correspondence analysis. We also attempt to show that TCA stays as close as possible to the original correspondence matrix without calculating a dissimilarity (or similarity) measure between rows or columns. Further, we discuss some new geometric and distance aspects of TCA.

[1]  Michael Greenacre,et al.  Visualization of Categorical Data , 1998 .

[2]  Simona Balbi,et al.  Chapter 21 – Graphical Displays in Nonsymmetrical Correspondence Analysis , 1998 .

[3]  Biagio Simonetti,et al.  Multiple Taxicab Correspondence Analysis of a Survey Related to Health Services , 2021, Journal of Data Science.

[4]  V. Choulakian The optimality of the centroid method , 2003 .

[5]  A. D. Gordon,et al.  Correspondence Analysis Handbook. , 1993 .

[6]  S. Haberman The Analysis of Residuals in Cross-Classified Tables , 1973 .

[8]  Vartan Choulakian,et al.  Multiple taxicab correspondence analysis , 2008, Adv. Data Anal. Classif..

[9]  M. Hill,et al.  Nonlinear Multivariate Analysis. , 1990 .

[10]  Jules de Tibeiro,et al.  Graph Partitioning by Correspondence Analysis and Taxicab Correspondence Analysis , 2013, J. Classif..

[11]  Yoshio Takane,et al.  Tests of ignoring and eliminating in nonsymmetric correspondence analysis , 2009, Adv. Data Anal. Classif..

[12]  M. Greenacre Correspondence analysis of raw data. , 2010, Ecology.

[13]  S. Nishisato Forced classification: A simple application of a quantification method , 1984 .

[14]  Fionn Murtagh,et al.  Correspondence Analysis and Data Coding with Java and R , 2005 .

[15]  Shizuhiko Nishisato,et al.  Elements of Dual Scaling: An Introduction To Practical Data Analysis , 1993 .

[16]  A. Agresti Categorical data analysis , 1993 .

[17]  S. Zamir,et al.  Lower Rank Approximation of Matrices by Least Squares With Any Choice of Weights , 1979 .

[18]  Bernard Fichet,et al.  Metrics of Lp-type and distributional equivalence principle , 2009, Adv. Data Anal. Classif..

[19]  R. Clarke,et al.  Theory and Applications of Correspondence Analysis , 1985 .

[20]  A. H. Siddiqi,et al.  Introduction to functional analysis with applications , 2006 .

[21]  V. Choulakian Taxicab Correspondence Analysis , 2006, Psychometrika.

[22]  Noga Alon,et al.  Approximating the Cut-Norm via Grothendieck's Inequality , 2006, SIAM J. Comput..

[23]  E. Beh Simple correspondence analysis using adjusted residuals , 2012 .

[24]  Vartan Choulakian,et al.  L1-norm projection pursuit principal component analysis , 2006, Comput. Stat. Data Anal..

[25]  Brigitte Le Roux,et al.  Geometric Data Analysis , 2005 .

[26]  V. Choulakian Transposition invariant principal component analysis in L1 for long tailed data , 2005 .

[27]  B. L. Roux,et al.  Geometric Data Analysis: From Correspondence Analysis to Structured Data Analysis , 2004 .

[28]  V. Choulakian Taxicab Correspondence Analysis of Contingency Tables with One Heavyweight Column , 2008 .

[29]  Gilbert Saporta,et al.  L'analyse des données , 1981 .