Breath Analysis for Medical Diagnosis

The purpose of this review is to highlight the advances in technology and understanding in the field of breath analysis for medical diagnosis. A critical review of the methods of breath collection, treatment, and analysis is given, highlighting the problems facing the field and areas where promising advancement has been made. One particular area of interest is centered around electronic noses, ideally, portable devices which aim to mimic biological olifactory systems in analysing gases to produce odor fingerprints. Furthermore, recent work has shown it is possible to modify the basic sensor materials to both improve their performance, increase their tolerance to factors such as water vapour interferance which often leave the sensor system de-sensitized to the gaseous biomarkers, and enhance their selectivity. It will be shown how it is possible to accurately quantify concentrations of VOC’s

[1]  W. Cao,et al.  Current Status of Methods and Techniques for Breath Analysis , 2007 .

[2]  P. Sobotka,et al.  Pentane and isoprene in expired air from humans: gas-chromatographic analysis of single breath. , 1994, Clinical chemistry.

[3]  Patrik Španěl,et al.  Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath , 1996 .

[4]  H. Gaub,et al.  Weakly bound water molecules shorten single-stranded DNA. , 2006, Journal of the American Chemical Society.

[5]  H. Haick,et al.  Diagnosing lung cancer in exhaled breath using gold nanoparticles. , 2009, Nature nanotechnology.

[6]  W. Lonneman,et al.  A comparison of sampling and analysis methods for low-ppbC levels of volatile organic compounds in ambient air. , 2001, Journal of environmental monitoring : JEM.

[7]  S. Pratsinis,et al.  Dopants in Vapor‐Phase Synthesis of Titania Powders , 1992 .

[8]  David Zhang,et al.  Diabetes Identification and Classification by Means of a Breath Analysis System , 2010, ICMB.

[9]  Cristina E. Davis,et al.  Editorial The Future of Sensors and Instrumentation for Human Breath Analysis , 2010 .

[10]  P. P. Sahay,et al.  Zinc oxide thin film gas sensor for detection of acetone , 2005 .

[11]  Michael Phillips,et al.  Can the electronic nose really sniff out lung cancer? , 2005, American journal of respiratory and critical care medicine.

[12]  Dewi W. Lewis,et al.  Zeolite-Modified Discriminating Gas Sensors , 2009 .

[13]  X. Zhang,et al.  Determination of acetone in human breath by gas chromatography-mass spectrometry and solid-phase microextraction with on-fiber derivatization. , 2004, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[14]  H. Hill,et al.  Metabolic profiling by ion mobility mass spectrometry (IMMS) , 2008, Metabolomics.

[15]  Diffusive uptake in passive and active adsorbent sampling using thermal desorption tubes. , 2002, Journal of environmental monitoring : JEM.

[16]  T. Seiyama,et al.  A New Detector for Gaseous Components Using Semiconductive Thin Films. , 1962 .

[17]  M. Phillips,et al.  Breath tests in medicine. , 1992, Scientific American.

[18]  E. Martinelli,et al.  Lung cancer identification by the analysis of breath by means of an array of non-selective gas sensors. , 2003, Biosensors & bioelectronics.

[19]  A. B. Robinson,et al.  Quantitative analysis of urine vapor and breath by gas-liquid partition chromatography. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[20]  P. Zanen,et al.  An off-line breath sampling and analysis method suitable for large screening studies , 2007, Physiological measurement.

[21]  Jay W. Grate,et al.  Acoustic Wave Sensors , 1996 .

[22]  Pelagia-Irene Gouma,et al.  Ferroelectric WO3 Nanoparticles for Acetone Selective Detection , 2008 .

[23]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[24]  A. Johnson,et al.  DNA-Coated Nanosensors for Breath Analysis , 2010, IEEE Sensors Journal.

[25]  M. Phillips Method for the collection and assay of volatile organic compounds in breath. , 1997, Analytical biochemistry.

[26]  Alan Gelperin,et al.  DNA-decorated carbon nanotubes for chemical sensing , 2005, Nano letters.

[27]  H. Haick,et al.  Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors , 2010, British Journal of Cancer.

[28]  S. Pratsinis,et al.  Minimal cross-sensitivity to humidity during ethanol detection by SnO2–TiO2 solid solutions , 2009, Nanotechnology.

[29]  G. Vardon,et al.  Respiratory water loss. , 1980, Respiration physiology.

[30]  M. Mcculloch,et al.  Diagnostic Accuracy of Canine Scent Detection in Early- and Late-Stage Lung and Breast Cancers , 2006, Integrative cancer therapies.

[31]  A. Manolis,et al.  The diagnostic potential of breath analysis. , 1983, Clinical chemistry.

[32]  David J. Williams,et al.  Zeolite Modified Discriminating Gas Sensors , 2008 .

[33]  A. Jemal,et al.  Cancer Statistics, 2010 , 2010, CA: a cancer journal for clinicians.

[34]  Nicolae Barsan,et al.  Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles , 2006 .

[35]  C. Kneepkens,et al.  The potential of the hydrocarbon breath test as a measure of lipid peroxidation. , 1994, Free radical biology & medicine.

[36]  David Zhang,et al.  A Novel Breath Analysis System Based on Electronic Olfaction , 2010, IEEE Transactions on Biomedical Engineering.

[37]  P. Rutgeerts,et al.  Porous-layer open-tubular gas chromatography in combination with an ion trap detector to assess volatile metabolites in human breath. , 1989, Biomedical & environmental mass spectrometry.

[38]  Investigation of organic vapor losses to condensed water vapor in Tedlar bags used for exhaled-breath sampling. , 1996, American Industrial Hygiene Association journal.

[39]  Raed A. Dweik,et al.  Can the Electronic Nose Really Sniff out Lung Cancer , 2005 .

[40]  Giuseppe Ferri,et al.  The application of metalloporphyrins as coating material for quartz microbalance-based chemical sensors , 1996 .

[41]  J. Szulejko,et al.  Evidence for Cancer Biomarkers in Exhaled Breath , 2010, IEEE Sensors Journal.

[42]  R. P. Gupta,et al.  Oxide Materials for Development of Integrated Gas Sensors—A Comprehensive Review , 2004 .

[43]  Carsten Warneke,et al.  Validation of atmospheric VOC measurements by proton-transfer-reaction mass spectrometry using a gas-chromatographic preseparation method. , 2003, Environmental science & technology.

[44]  M. J. Henderson,et al.  Acetone in the Breath: A Study of Acetone Exhalation in Diabetic and Nondiabetic Human Subjects , 1952, Diabetes.

[45]  Hossam Haick,et al.  Chemical sensors based on molecularly modified metallic nanoparticles , 2007 .

[46]  Arthur Greenberg,et al.  Primer on Kidney Diseases , 2005 .

[47]  Jianzhong Li,et al.  Determination of acetone in breath , 2005 .

[48]  P. Španěl,et al.  Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. , 1997, Kidney international.

[49]  J. Pawliszyn,et al.  Analysis of human breath with micro extraction techniques and continuous monitoring of carbon dioxide concentration , 2006, Analytical and bioanalytical chemistry.

[50]  T. Risby,et al.  What is Normal Breath? Challenge and Opportunity , 2010 .

[51]  M. Gare,et al.  Dilution of respiratory solutes in exhaled condensates. , 2002, American journal of respiratory and critical care medicine.

[52]  J. Austin,et al.  Detection of lung cancer using weighted digital analysis of breath biomarkers. , 2008, Clinica chimica acta; international journal of clinical chemistry.

[53]  Anton Amann,et al.  Lung cancer detection by proton transfer reaction mass-spectrometric analysis of human breath gas , 2007 .

[54]  Diego R Martin,et al.  Health effects of ionising radiation from diagnostic CT , 2006, The Lancet.

[55]  B. Ross,et al.  Detection of acetone and isoprene in human breath using a combination of thermal desorption and selected ion flow tube mass spectrometry , 2009 .

[56]  C. Baratto,et al.  Metal oxide nanocrystals for gas sensing , 2004, Proceedings of IEEE Sensors, 2004..

[57]  R. Hoeldtke,et al.  Acetone Metabolism During Diabetic Ketoacidosis , 1982, Diabetes.

[58]  D. Vlachos,et al.  Modelling and simulation of tin oxide based thick-film gas sensors using Monte Carlo techniques , 1994 .

[59]  M. Kalapos,et al.  On the mammalian acetone metabolism: from chemistry to clinical implications. , 2003, Biochimica et biophysica acta.

[60]  D. S. Vlachos,et al.  The effect of humidity on tin-oxide thick-film gas sensors in the presence of reducing and combustible gases , 1995 .

[61]  N. Bârsan,et al.  Electronic nose: current status and future trends. , 2008, Chemical reviews.

[62]  P Rolfe,et al.  The selected ion flow tube (SIFT)--a novel technique for biological monitoring. , 1996, The Annals of occupational hygiene.

[63]  P. Mazzone,et al.  Detection of lung cancer by sensor array analyses of exhaled breath. , 2005, American journal of respiratory and critical care medicine.

[64]  K. Chung,et al.  Increased exhaled nitric oxide in asthma is mainly derived from the lower respiratory tract. , 1996, American journal of respiratory and critical care medicine.

[65]  P. Woodward,et al.  Ferroelectric Tungsten Trioxide , 1997 .

[66]  S. Olesik,et al.  Application of low-temperature glassy carbon-coated macrofibers for solid-phase microextraction analysis of simulated breath volatiles. , 2003, Analytical chemistry.

[67]  J. Kauer,et al.  Solid-State, Dye-Labeled DNA Detects Volatile Compounds in the Vapor Phase , 2008, PLoS biology.

[68]  H. J. O’neill,et al.  A computerized classification technique for screening for the presence of breath biomarkers in lung cancer. , 1988, Clinical chemistry.

[69]  M. Zheng,et al.  DNA-assisted dispersion and separation of carbon nanotubes , 2003, Nature materials.

[70]  J. V. Sali,et al.  Acetone vapor sensing properties of screen printed WO(3) thick films. , 2007, Talanta.

[71]  Michael R Hamblin,et al.  CA : A Cancer Journal for Clinicians , 2011 .

[72]  Yuh-Jiuan Lin,et al.  Application of the electronic nose for uremia diagnosis , 2001 .

[73]  A. Ceccarini,et al.  Breath analysis: trends in techniques and clinical applications , 2005 .

[74]  R. Cataneo,et al.  Volatile organic compounds in breath as markers of lung cancer: a cross-sectional study , 1999, The Lancet.

[75]  N. Bârsan,et al.  Conduction Model of Metal Oxide Gas Sensors , 2001 .

[76]  Ping Wang,et al.  A study of the volatile organic compounds exhaled by lung cancer cells in vitro for breath diagnosis , 2007, Cancer.

[77]  D K Owens,et al.  Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: a meta-analysis. , 2001, JAMA.

[78]  David E. Williams Semiconducting oxides as gas-sensitive resistors , 1999 .

[79]  Sotiris E Pratsinis,et al.  Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. , 2010, Analytical chemistry.

[80]  K. Zakrzewska,et al.  Mixed oxides as gas sensors , 2001 .

[81]  T R Fraser,et al.  Breath acetone and blood sugar measurements in diabetes. , 1969, Clinical science.

[82]  N. Yamazoe,et al.  Spin-coated thin films of SiO2–WO3 composites for detection of sub-ppm NO2 , 1997 .

[83]  T R Fraser,et al.  Breath-acetone and blood-sugar measurements in diabetes. , 1969, Lancet.

[84]  S. Pratsinis,et al.  Optimal Doping for Enhanced SnO2 Sensitivity and Thermal Stability , 2008 .

[85]  Sotiris E. Pratsinis,et al.  Flame aerosol synthesis of smart nanostructured materials , 2007 .

[86]  M. Phillips,et al.  Ion-trap detection of volatile organic compounds in alveolar breath. , 1992, Clinical chemistry.

[87]  C. N. Hewitt,et al.  Effect of water vapour pressure on monoterpene measurements using proton transfer reaction-mass spectrometry (PTR-MS) , 2004 .

[88]  David E. Williams,et al.  Discrimination effects in zeolite modified metal oxide semiconductor gas sensors , 2009, 2009 IEEE Sensors.

[89]  E. Comini Metal oxide nano-crystals for gas sensing. , 2006, Analytica chimica acta.