Angiotensin-(1–9) prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway

[1]  inositol 1,4,5‐triphosphate , 2020, Catalysis from A to Z.

[2]  G. Meister,et al.  Angiotensin-(1–9) prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway , 2020, Cell Death & Differentiation.

[3]  Ana Kozomara,et al.  miRBase: from microRNA sequences to function , 2018, Nucleic Acids Res..

[4]  Astrid Gall,et al.  Ensembl 2019 , 2018, Nucleic Acids Res..

[5]  B. Rothermel,et al.  Caveolin-1 impairs PKA-DRP1-mediated remodelling of ER–mitochondria communication during the early phase of ER stress , 2018, Cell Death & Differentiation.

[6]  B. Rothermel,et al.  Down Syndrome Critical Region 1 Gene, Rcan1, Helps Maintain a More Fused Mitochondrial Network , 2018, Circulation research.

[7]  L. Randau,et al.  A regulatory RNA is involved in RNA duplex formation and biofilm regulation in Sulfolobus acidocaldarius , 2018, Nucleic acids research.

[8]  C. Hetz,et al.  Genome-wide circulating microRNA expression profiling reveals potential biomarkers for amyotrophic lateral sclerosis , 2017, Neurobiology of Aging.

[9]  Godfrey L. Smith,et al.  Gene Therapy With Angiotensin-(1-9) Preserves Left Ventricular Systolic Function After Myocardial Infarction , 2016, Journal of the American College of Cardiology.

[10]  B. Rothermel,et al.  mTORC1 inhibitor rapamycin and ER stressor tunicamycin induce differential patterns of ER-mitochondria coupling , 2016, Scientific Reports.

[11]  G. Halliday,et al.  Inhibitor treatment of peripheral mononuclear cells from Parkinson’s disease patients further validates LRRK2 dephosphorylation as a pharmacodynamic biomarker , 2016, Scientific Reports.

[12]  T. Minamino,et al.  Physiological and pathological cardiac hypertrophy. , 2016, Journal of molecular and cellular cardiology.

[13]  N. Rajewsky,et al.  The Lupus Autoantigen La Prevents Mis-channeling of tRNA Fragments into the Human MicroRNA Pathway. , 2016, Molecular cell.

[14]  Jun Ding,et al.  TarPmiR: a new approach for microRNA target site prediction , 2016, Bioinform..

[15]  Sergio Lavandero,et al.  Mitochondrial dynamics, mitophagy and cardiovascular disease , 2016, The Journal of physiology.

[16]  B. Rothermel,et al.  ER-to-mitochondria miscommunication and metabolic diseases. , 2015, Biochimica et biophysica acta.

[17]  John G Flannery,et al.  Neuron-glia signaling in developing retina mediated by neurotransmitter spillover , 2015, eLife.

[18]  H. Dweep,et al.  miRWalk2.0: a comprehensive atlas of microRNA-target interactions , 2015, Nature Methods.

[19]  H. Degens,et al.  Corrigendum: The impact of resveratrol and hydrogen peroxide on muscle cell plasticity shows a dose-dependent interaction , 2015, Scientific Reports.

[20]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[21]  V. Beneš,et al.  Identification of cytokine-induced modulation of microRNA expression and secretion as measured by a novel microRNA specific qPCR assay , 2015, Scientific Reports.

[22]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[23]  B. Rothermel,et al.  Alteration in mitochondrial Ca2+ uptake disrupts insulin signaling in hypertrophic cardiomyocytes , 2014, Cell Communication and Signaling.

[24]  A. Quinlan BEDTools: The Swiss‐Army Tool for Genome Feature Analysis , 2014, Current protocols in bioinformatics.

[25]  A. Zorzano,et al.  Mitochondrial fission is required for cardiomyocyte hypertrophy mediated by a Ca2+-calcineurin signaling pathway , 2014, Journal of Cell Science.

[26]  G. Hajnóczky,et al.  Mitochondrial fusion is frequent in skeletal muscle and supports excitation–contraction coupling , 2014, The Journal of cell biology.

[27]  R. Alzamora,et al.  Angiotensin-(1–9) reverses experimental hypertension and cardiovascular damage by inhibition of the angiotensin converting enzyme/Ang II axis , 2014, Journal of hypertension.

[28]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[29]  D. Bartel,et al.  Global analyses of the effect of different cellular contexts on microRNA targeting. , 2014, Molecular cell.

[30]  A. Zorzano,et al.  Mitochondrial fission is required for cardiomyocyte hypertrophy via a Ca 2 +-calcineurin signalling pathway , 2014 .

[31]  K. Friedrich,et al.  Graded inhibition of oncogenic Ras-signaling by multivalent Ras-binding domains , 2014, Cell Communication and Signaling.

[32]  D. Bernlohr,et al.  Insulin Stimulates Mitochondrial Fusion and Function in Cardiomyocytes via the Akt-mTOR-NFκB-Opa-1 Signaling Pathway , 2013, Diabetes.

[33]  D. Bers,et al.  OPA1 Mutation and Late-Onset Cardiomyopathy: Mitochondrial Dysfunction and mtDNA Instability , 2012, Journal of the American Heart Association.

[34]  Habib Samady,et al.  Association of Coronary Wall Shear Stress With Atherosclerotic Plaque Burden, Composition, and Distribution in Patients With Coronary Artery Disease , 2012, Journal of the American Heart Association.

[35]  Rosario Rizzuto,et al.  Mitochondria as sensors and regulators of calcium signalling , 2012, Nature Reviews Molecular Cell Biology.

[36]  Eugene Berezikov,et al.  microRNAs associated with the different human Argonaute proteins , 2012, Nucleic acids research.

[37]  S. Tyagi,et al.  Mitochondrial division/mitophagy inhibitor (Mdivi) Ameliorates Pressure Overload Induced Heart Failure , 2012, PloS one.

[38]  Yali Zhang,et al.  Effect of distinct sources of Ca2+ on cardiac hypertrophy in cardiomyocytes , 2012, Experimental biology and medicine.

[39]  A. Dominiczak,et al.  Angiotensin-(1-9) Attenuates Cardiac Fibrosis in the Stroke-Prone Spontaneously Hypertensive Rat via the Angiotensin Type 2 Receptor , 2012, Hypertension.

[40]  G. Dorn,et al.  Mitochondrial Fusion is Essential for Organelle Function and Cardiac Homeostasis , 2011, Circulation research.

[41]  S. Gammeltoft,et al.  Angiotensin II type 1 receptor signalling regulates microRNA differentially in cardiac fibroblasts and myocytes , 2011, British journal of pharmacology.

[42]  M. Chiong,et al.  Rho kinase inhibition activates the homologous angiotensin-converting enzyme-angiotensin-(1–9) axis in experimental hypertension , 2011, Journal of hypertension.

[43]  T. Prolla,et al.  Mitochondrial Oxidative Stress Mediates Angiotensin II–Induced Cardiac Hypertrophy and G&agr;q Overexpression–Induced Heart Failure , 2011, Circulation research.

[44]  G. Milligan,et al.  Angiotensin1‐9 antagonises pro‐hypertrophic signalling in cardiomyocytes via the angiotensin type 2 receptor , 2011, The Journal of physiology.

[45]  Ning Wang,et al.  MicroRNA-328 Contributes to Adverse Electrical Remodeling in Atrial Fibrillation , 2010, Circulation.

[46]  V. Parra,et al.  Mitochondria fine-tune the slow Ca(2+) transients induced by electrical stimulation of skeletal myotubes. , 2010, Cell calcium.

[47]  B. Langmead,et al.  Aligning Short Sequencing Reads with Bowtie , 2010, Current protocols in bioinformatics.

[48]  D. Mears,et al.  An inositol 1,4,5-triphosphate (IP3)-IP3 receptor pathway is required for insulin-stimulated glucose transporter 4 translocation and glucose uptake in cardiomyocytes. , 2010, Endocrinology.

[49]  S. Wells,et al.  A Mutation in the Mitochondrial Fission Gene Dnm1l Leads to Cardiomyopathy , 2010, PLoS genetics.

[50]  Sang-Bing Ong,et al.  Inhibiting Mitochondrial Fission Protects the Heart Against Ischemia/Reperfusion Injury , 2010, Circulation.

[51]  J. Vicencio,et al.  Parallel activation of Ca2+-induced survival and death pathways in cardiomyocytes by sorbitol-induced hyperosmotic stress , 2010, Apoptosis.

[52]  M. Chiong,et al.  Angiotensin-(1–9) regulates cardiac hypertrophy in vivo and in vitro , 2010, Journal of hypertension.

[53]  S. Volinia,et al.  Non-coding RNAs: a key to future personalized molecular therapy? , 2010, Genome Medicine.

[54]  M. Núñez,et al.  Iron induces protection and necrosis in cultured cardiomyocytes: Role of reactive oxygen species and nitric oxide. , 2010, Free radical biology & medicine.

[55]  Lars Lundell,et al.  Using transcriptomics to identify and validate novel biomarkers of human skeletal muscle cancer cachexia , 2010, Genome Medicine.

[56]  D. Rojas-Rivera,et al.  Regulatory volume decrease in cardiomyocytes is modulated by calcium influx and reactive oxygen species , 2009, FEBS letters.

[57]  P. Pinton,et al.  Structural and functional link between the mitochondrial network and the endoplasmic reticulum. , 2009, The international journal of biochemistry & cell biology.

[58]  Yanjie Lu,et al.  MicroRNAs and apoptosis: implications in the molecular therapy of human disease , 2009, Clinical and experimental pharmacology & physiology.

[59]  Chunxiang Zhang,et al.  MicroRNA Expression Signature and the Role of MicroRNA-21 in the Early Phase of Acute Myocardial Infarction* , 2009, The Journal of Biological Chemistry.

[60]  Clay B Marsh,et al.  MicroRNAs in the Pathogenesis of Lung Cancer , 2009, Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer.

[61]  F. España,et al.  Insights into the role of microRNAs in cardiac diseases: from biological signalling to therapeutic targets. , 2009, Cardiovascular & hematological agents in medicinal chemistry.

[62]  P. Bernardi,et al.  Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria , 2008, Proceedings of the National Academy of Sciences.

[63]  David R. Croucher,et al.  Nedd4 Controls Animal Growth by Regulating IGF-1 Signaling , 2008, Science Signaling.

[64]  F. Fyhrquist,et al.  Renin‐angiotensin system revisited , 2008, Journal of internal medicine.

[65]  Y. Yoon,et al.  Mitochondrial fission mediates high glucose-induced cell death through elevated production of reactive oxygen species. , 2008, Cardiovascular research.

[66]  S. Frank,et al.  Shaping mitochondria: The complex posttranslational regulation of the mitochondrial fission protein DRP1 , 2008, IUBMB life.

[67]  S. Houser,et al.  Does Contractile Ca2+ Control Calcineurin-NFAT Signaling and Pathological Hypertrophy in Cardiac Myocytes? , 2008, Science Signaling.

[68]  A. Hamilton,et al.  Improved northern blot method for enhanced detection of small RNA , 2008, Nature Protocols.

[69]  Cecilia Hidalgo,et al.  Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis. , 2008, Cardiovascular research.

[70]  S. Strack,et al.  Reversible phosphorylation of Drp1 by cyclic AMP‐dependent protein kinase and calcineurin regulates mitochondrial fission and cell death , 2007, EMBO reports.

[71]  C. Blackstone,et al.  Cyclic AMP-dependent Protein Kinase Phosphorylation of Drp1 Regulates Its GTPase Activity and Mitochondrial Morphology* , 2007, Journal of Biological Chemistry.

[72]  Toshihiko Oka,et al.  Mitotic Phosphorylation of Dynamin-related GTPase Drp1 Participates in Mitochondrial Fission* , 2007, Journal of Biological Chemistry.

[73]  T. Letellier,et al.  Mitochondrial bioenergetics and structural network organization , 2007, Journal of Cell Science.

[74]  E. Olson,et al.  A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure , 2006, Proceedings of the National Academy of Sciences.

[75]  G. Díaz-Araya,et al.  Enalapril Attenuates Downregulation of Angiotensin-Converting Enzyme 2 in the Late Phase of Ventricular Dysfunction in Myocardial Infarcted Rat , 2006, Hypertension.

[76]  J. Mendell,et al.  MicroRNAs in cell proliferation, cell death, and tumorigenesis , 2006, British Journal of Cancer.

[77]  D. Chan,et al.  Disruption of Fusion Results in Mitochondrial Heterogeneity and Dysfunction* , 2005, Journal of Biological Chemistry.

[78]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[79]  M. McNiven,et al.  The Mitochondrial Protein hFis1 Regulates Mitochondrial Fission in Mammalian Cells through an Interaction with the Dynamin-Like Protein DLP1 , 2003, Molecular and Cellular Biology.

[80]  Rick B. Vega,et al.  The role of modulatory calcineurin-interacting proteins in calcineurin signaling. , 2003, Trends in cardiovascular medicine.

[81]  Philip Lijnzaad,et al.  The Ensembl genome database project , 2002, Nucleic Acids Res..

[82]  L. Lim,et al.  An Abundant Class of Tiny RNAs with Probable Regulatory Roles in Caenorhabditis elegans , 2001, Science.

[83]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[84]  K. Robison,et al.  A Novel Angiotensin-Converting Enzyme–Related Carboxypeptidase (ACE2) Converts Angiotensin I to Angiotensin 1-9 , 2000, Circulation research.

[85]  P. Pagano Beyond the Endothelium , 2000 .

[86]  J. Aten,et al.  Measurement of co‐localization of objects in dual‐colour confocal images , 1993, Journal of microscopy.

[87]  M. Uhler,et al.  Inhibition of protein kinase-A by overexpression of the cloned human protein kinase inhibitor. , 1991, Molecular endocrinology.