Verifying single-station seismic approaches using Earth-based data: Preparation for data return from the InSight mission to Mars

[1]  F. Sohl 10.02 – Interior Structure, Composition, and Mineralogy of the Terrestrial Planets , 2015 .

[2]  Sami W. Asmar,et al.  InSight: A Discovery Class Mission to Explore the Interior of Mars , 2014 .

[3]  F. Nimmo,et al.  Dissipation at tidal and seismic frequencies in a melt‐free, anhydrous Mars , 2013 .

[4]  P. Vacher,et al.  A Bayesian approach to infer radial models of temperature and anisotropy in the transition zone from surface wave dispersion curves , 2013 .

[5]  Amir Khan,et al.  Upper mantle compositional variations and discontinuity topography imaged beneath Australia from Bayesian inversion of surface‐wave phase velocities and thermochemical modeling , 2013 .

[6]  Michael H. Ritzwoller,et al.  Joint inversion of surface wave dispersion and receiver functions: a Bayesian Monte-Carlo approach , 2013 .

[7]  M. Ritzwoller,et al.  A 3‐D model of the crust and uppermost mantle beneath the Central and Western US by joint inversion of receiver functions and surface wave dispersion , 2013 .

[8]  F. Nimmo,et al.  Dissipation at tidal and seismic frequencies in a melt-free Moon , 2012 .

[9]  Göran Ekström,et al.  The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes , 2012 .

[10]  J. Trampert,et al.  Seismic and mineralogical structures of the lower mantle from probabilistic tomography , 2012 .

[11]  P. Lognonné,et al.  INSIGHT and single-station broadband seismology: From signal and noise to interior structure determination , 2012 .

[12]  W. Banerdt,et al.  The InSight SEIS Experiment , 2012 .

[13]  Malcolm Sambridge,et al.  Transdimensional inversion of receiver functions and surface wave dispersion , 2012 .

[14]  P. Lognonné,et al.  Very preliminary reference Moon model , 2011 .

[15]  V. Dehant,et al.  The deep interior of Venus, Mars, and the Earth: A brief review and the need for planetary surface-based measurements , 2011 .

[16]  Véronique Dehant,et al.  Geodesy constraints on the interior structure and composition of Mars , 2011 .

[17]  David L. Valentine,et al.  Seismic Detection of the Lunar Core , 2011 .

[18]  Global Surveyor Topography and Gravity Internal Structure and Early Thermal Evolution of Mars from Mars , 2011 .

[19]  L. Boschi,et al.  On mantle chemical and thermal heterogeneities and anisotropy as mapped by inversion of global surface wave data , 2009 .

[20]  W. Banerdt,et al.  Numerical assessment of the effects of topography and crustal thickness on martian seismograms using a coupled modal solution–spectral element method , 2008 .

[21]  Frequency-size distributions for intraplate earthquakes , 2007 .

[22]  J. Maclennan,et al.  Joint inversion of seismic and gravity data for lunar composition and thermal state , 2007 .

[23]  J. Connolly,et al.  Constraining the Composition and Thermal State of Mars , 2007 .

[24]  T. Spohn,et al.  A seismic model of the lunar mantle and constraints on temperature and mineralogy , 2006 .

[25]  Ernst Hauber,et al.  Working models for spatial distribution and level of Mars' seismicity , 2006 .

[26]  M. Wieczorek,et al.  Lateral variations of lunar crustal thickness from the Apollo seismic data set , 2006 .

[27]  Tilman Spohn,et al.  Geophysical constraints on the composition and structure of the Martian interior , 2005 .

[28]  L. Rivera,et al.  Prograde Rayleigh wave particle motion , 2005 .

[29]  J. Sleewaegen,et al.  Interior structure of terrestrial planets : Modeling Mars' mantle and its electromagnetic, geodetic, and seismic properties , 2005 .

[30]  D. Giardini,et al.  One-dimensional physical reference models for the upper mantle and transition zone: Combining seismic and mineral physics constraints , 2005 .

[31]  Véronique Dehant,et al.  Network science, NetLander: a european mission to study the planet Mars ☆ , 2004 .

[32]  J. Stevens,et al.  Backazimuth estimation reliability using surface wave polarization , 2004 .

[33]  T. Gudkova,et al.  Mars: excitation of free oscillations , 2004 .

[34]  Niels Bohr,et al.  Monte Carlo sampling of solutions to inverse problems , 2004 .

[35]  Maria T. Zuber,et al.  Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios , 2004 .

[36]  David E. Smith,et al.  Crustal structure of Mars from gravity and topography , 2004 .

[37]  Philippe Lognonné,et al.  A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon , 2003 .

[38]  F. Nimmo Admittance estimates of mean crustal thickness and density at the Martian hemispheric dichotomy , 2002 .

[39]  M. Ritzwoller,et al.  Monte-Carlo inversion for a global shear-velocity model of the crust and upper mantle , 2002 .

[40]  Klaus Mosegaard,et al.  An inquiry into the lunar interior: A nonlinear inversion of the Apollo lunar seismic data , 2002 .

[41]  P. Lognonné,et al.  First seismic receiver functions on the Moon , 2001 .

[42]  F. Nimmo,et al.  Estimates of Martian crustal thickness from viscous relaxation of topography , 2001 .

[43]  M. Golombek A REVISION OF MARS SEISMICITY FROM SURFACE FAULTING: , 2001 .

[44]  L. Rivera,et al.  The NetLander very broad band seismometer , 2000 .

[45]  J W Head,et al.  Internal structure and early thermal evolution of Mars from Mars Global Surveyor topography and gravity. , 2000, Science.

[46]  Jay Pulliam,et al.  Single-station location of seismic events: a review and a plea for more research , 1999 .

[47]  Thomas J. Owens,et al.  The TauP Toolkit: Flexible Seismic Travel-Time and Raypath Utilities , 1999 .

[48]  Hiroo Kanamori,et al.  COMPUTATION OF SEISMOGRAMS AND ATMOSPHERIC OSCILLATIONS BY NORMAL-MODE SUMMATION FOR A SPHERICAL EARTH MODEL WITH REALISTIC ATMOSPHERE , 1998 .

[49]  C P McKay,et al.  A sophisticated lander for scientific exploration of Mars: scientific objectives and implementation of the Mars-96 Small Station. , 1998, Planetary and space science.

[50]  Eric P. Chael,et al.  An automated Rayleigh-wave detection algorithm , 1997, Bulletin of the Seismological Society of America.

[51]  Tilman Spohn,et al.  The interior structure of Mars: Implications from SNC meteorites , 1997 .

[52]  C. Sotin,et al.  Theoretical seismic models of Mars : the importance of the iron content of the mantle , 1996 .

[53]  Philippe Lognonné,et al.  Ultra broad band seismology on InterMarsNet , 1996 .

[54]  T. Lay,et al.  Modern Global Seismology , 1995 .

[55]  Harry Y. McSween,et al.  What we have learned about Mars from SNC meteorites , 1994 .

[56]  B. Mosser,et al.  Planetary seismology , 1993 .

[57]  Kenneth L. Tanaka,et al.  A Prediction of Mars Seismicity from Surface Faulting , 1992, Science.

[58]  D. G. Isaak High‐temperature elasticity of iron‐bearing olivines , 1992 .

[59]  Don L. Anderson,et al.  Scientific rationale and requirements for a global seismic network on Mars. Report of a workshop. , 1991 .

[60]  Arch C. Johnston,et al.  Earthquakes in stable continental crust , 1990 .

[61]  John H. Woodhouse,et al.  CENTROID-MOMENT TENSOR SOLUTIONS FOR 201 MODERATE AND LARGE EARTHQUAKES OF 1981 , 1983 .

[62]  Yosio Nakamura,et al.  Seismic velocity structure of the lunar mantle , 1983 .

[63]  D. L. Anderson,et al.  Preliminary reference earth model , 1981 .

[64]  G. Latham,et al.  Shallow moonquakes: depth, distribution and implications as to the present state of the lunar interior. , 1979 .

[65]  Don L. Anderson,et al.  Seismology on Mars , 1977 .

[66]  F. Gilbert,et al.  An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra , 1975, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[67]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[68]  Robert A. Phinney,et al.  Structure of the Earth's crust from spectral behavior of long‐period body waves , 1964 .

[69]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[70]  L. Geiger,et al.  Bestimmung des Weges der Erdbebenwellen im Erdinnern , 1910 .

[71]  G.,et al.  FOR A GLOBAL SEISMIC NETWORK ON MARS , 2022 .