The Poisson Function of Finite Elasticity

The Poisson function is introduced to study in a simple tension test the lateral contractive response of compressible and incompressible, isotropic elastic materials in finite strain. The relation of the Poisson function to the classical Poisson’s ratio and its behavior for certain constrained materials are discussed. Some experimental results for several elastomers, including two natural rubber compounds of the same kind studied in earlier basic experiments by Rivlin and Saunders, are compared with the derived relations. A special class of compressible materials is also considered. It is proved that the only class of compressible hyperelastic materials whose response functions depend on only the third principal invariant of the deformation tensor is the class first introduced in experiments by Blatz and Ko. Poisson functions for the Blatz-Ko polyurethane elastomers are derived; and our experimental data are reviewed in relation to a volume constraint equation used in their experiments.