Properties of an Aloha-Like Stability Region

A well-known inner bound on the stability region of the finite-user slotted Aloha protocol is the set of all arrival rates for which there exists some choice of the contention probabilities such that the associated worst case service rate for each user exceeds the user’s arrival rate, denoted <inline-formula> <tex-math notation="LaTeX">$\Lambda $ </tex-math></inline-formula>. Although testing membership in <inline-formula> <tex-math notation="LaTeX">$\Lambda $ </tex-math></inline-formula> of a given arrival rate can be posed as a convex program, it is nonetheless of interest to understand the properties of this set. In this paper, we develop new results of this nature, including, 1) an equivalence between membership in <inline-formula> <tex-math notation="LaTeX">$\Lambda $ </tex-math></inline-formula> and the existence of a positive root of a given polynomial, 2) a method to construct a vector of contention probabilities to stabilize any stabilizable arrival rate vector, 3) the volume of <inline-formula> <tex-math notation="LaTeX">$\Lambda $ </tex-math></inline-formula>, 4) explicit polyhedral, spherical, and ellipsoid inner and outer bounds on <inline-formula> <tex-math notation="LaTeX">$\Lambda $ </tex-math></inline-formula>, and 5) characterization of the generalized convexity properties of a natural “excess rate” function associated with <inline-formula> <tex-math notation="LaTeX">$\Lambda $ </tex-math></inline-formula>, including the convexity of the set of contention probabilities that stabilize a given arrival rate vector.

[1]  Anthony Ephremides,et al.  On the throughput, capacity, and stability regions of random multiple access , 2005, IEEE Transactions on Information Theory.

[2]  Axthonv G. Oettinger,et al.  IEEE Transactions on Information Theory , 1998 .

[3]  Anthony Ephremides,et al.  On the stability of interacting queues in a multiple-access system , 1988, IEEE Trans. Inf. Theory.

[4]  James L. Massey,et al.  The collision channel without feedback , 1985, IEEE Trans. Inf. Theory.

[5]  R. Weiner Lecture Notes in Economics and Mathematical Systems , 1985 .

[6]  S. K. Mishra,et al.  Nonconvex Optimization and Its Applications , 2008 .

[7]  Steven P. Weber,et al.  Geometric approximations of some Aloha-like stability regions , 2010, 2010 IEEE International Symposium on Information Theory.

[8]  Richard S. Ellis Volume of an N-Simplex by multiple Integration. , 1976 .

[9]  Jean C. Walrand,et al.  Approaching Throughput-Optimality in Distributed CSMA Scheduling Algorithms With Collisions , 2010, IEEE/ACM Transactions on Networking.

[10]  Israel Zang,et al.  Nine kinds of quasiconcavity and concavity , 1981 .

[11]  Boris Bellalta,et al.  Multiple access communications in future-generation wireless networks , 2012, EURASIP J. Wirel. Commun. Netw..

[12]  Alexandre Proutière,et al.  Performance of random medium access control, an asymptotic approach , 2008, SIGMETRICS '08.

[13]  Alexander L. Stolyar,et al.  Throughput Region of Random-Access Networks of General Topology , 2012, IEEE Transactions on Information Theory.

[14]  Ravi Mazumdar,et al.  On the Stability of Finite Queue Slotted Aloha Protocol , 2013, IEEE Transactions on Information Theory.

[15]  H. M. Möller,et al.  Invariant Integration Formulas for the n-Simplex by Combinatorial Methods , 1978 .

[16]  I. Olkin,et al.  Inequalities: Theory of Majorization and Its Applications , 1980 .

[17]  Nan Xie Multiple access stability and broadcast delay in wireless networks , 2014 .

[18]  Douglas J. Leith,et al.  On the Rate Region of CSMA/CA WLANs , 2013, IEEE Transactions on Information Theory.

[19]  D. Avis A Revised Implementation of the Reverse Search Vertex Enumeration Algorithm , 2000 .

[20]  Frank Thomson Leighton,et al.  Analysis of backoff protocols for multiple access channels , 1987, STOC '87.

[21]  Santosh S. Vempala,et al.  A practical volume algorithm , 2016, Math. Program. Comput..

[22]  Necdet Batir,et al.  SHARP INEQUALITIES FOR FACTORIAL n , 2008 .

[23]  M. Stojanovic,et al.  Underwater acoustic networks , 2000, IEEE Journal of Oceanic Engineering.

[24]  Osman Guler,et al.  The extremal volume ellipsoids of convex bodies, their symmetry properties, and their determination in some special cases , 2007, 0709.0707.

[25]  Frank Thomson Leighton,et al.  Analysis of Backoff Protocols for Multiple Access Channels , 1996, SIAM J. Comput..

[26]  Wei Luo,et al.  Stability of N interacting queues in random-access systems , 1999, IEEE Trans. Inf. Theory.

[27]  Ken R. Duffy,et al.  Log-convexity of rate region in 802.11e WLANs , 2010, IEEE Communications Letters.

[28]  A. Cambini,et al.  Generalized Convexity and Optimization: Theory and Applications , 2008 .

[29]  W. Szpankowski Stability conditions for some distributed systems: buffered random access systems , 1994, Advances in Applied Probability.

[30]  Venkat Anantharam The stability region of the finite-user slotted ALOHA protocol , 1991, IEEE Trans. Inf. Theory.

[31]  Lawrence G. Roberts,et al.  ALOHA packet system with and without slots and capture , 1975, CCRV.

[32]  Norman M. Abramson,et al.  THE ALOHA SYSTEM: another alternative for computer communications , 1899, AFIPS '70 (Fall).

[33]  Milica Stojanovic,et al.  Underwater sensor networks: applications, advances and challenges , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[35]  N. Abramson,et al.  THE ALOHANET — SURFING FOR WIRELESS DATA , 2022 .

[36]  Daniele Mortari,et al.  On the Rigid Rotation Concept in n-Dimensional Spaces: Part II , 2001 .

[37]  J LeithDouglas,et al.  Log-convexity of rate region in 802.11e WLANs , 2010 .

[38]  Dario Pompili,et al.  Challenges for efficient communication in underwater acoustic sensor networks , 2004, SIGBED.

[39]  D. Avis lrs : A Revised Implementation of the Rev rse Search Vertex Enumeration Algorithm , 1998 .

[40]  Yi Ouyang,et al.  A common information-based multiple access protocol achieving full throughput , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[41]  Norman M. Abramson,et al.  The Alohanet - surfing for wireless data [History of Communications] , 2009, IEEE Communications Magazine.

[42]  Karel A. Post Convexity of the nonachievable rate region for the collision channel without feedback , 1985, IEEE Trans. Inf. Theory.

[43]  Norman Abramson,et al.  The Throughput of Packet Broadcasting Channels , 1977, IEEE Trans. Commun..

[44]  Jean C. Walrand,et al.  Distributed Random Access Algorithm: Scheduling and Congestion Control , 2009, IEEE Transactions on Information Theory.

[45]  Charles M. Grinstead,et al.  Introduction to probability , 1999, Statistics for the Behavioural Sciences.