Atomic model of the type III secretion system needle

[1]  B. Fung,et al.  An improved broadband decoupling sequence for liquid crystals and solids. , 2000, Journal of magnetic resonance.

[2]  M. Hong,et al.  Determination of multiple ***φ***-torsion angles in proteins by selective and extensive (13)C labeling and two-dimensional solid-state NMR. , 1999, Journal of magnetic resonance.

[3]  John A Tainer,et al.  Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. , 2006, Molecular cell.

[4]  Nikolaus Grigorieff,et al.  Molecular Machines , 2001, The Journal of cell biology.

[5]  K. Namba,et al.  Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy , 2003, Nature.

[6]  P. Roversi,et al.  What's the point of the type III secretion system needle? , 2008, Proceedings of the National Academy of Sciences.

[7]  F. Cordes,et al.  Molecular model of a type III secretion system needle: Implications for host-cell sensing , 2006, Proceedings of the National Academy of Sciences.

[8]  T. Kimbrough,et al.  Contribution of Salmonella typhimurium type III secretion components to needle complex formation. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  S. Becker,et al.  13C spin dilution for simplified and complete solid-state NMR resonance assignment of insoluble biological assemblies. , 2011, Journal of the American Chemical Society.

[10]  Ronald Kühne,et al.  Solid-state NMR and SAXS studies provide a structural basis for the activation of αB-crystallin oligomers , 2010, Nature Structural &Molecular Biology.

[11]  P. Bradley,et al.  Toward High-Resolution de Novo Structure Prediction for Small Proteins , 2005, Science.

[12]  T. Marlovits,et al.  Three-Dimensional Model of Salmonella’s Needle Complex at Subnanometer Resolution , 2011, Science.

[13]  Patrik Lundström,et al.  Fractional 13C enrichment of isolated carbons using [1-13C]- or [2-13C]-glucose facilitates the accurate measurement of dynamics at backbone Cα and side-chain methyl positions in proteins , 2007, Journal of biomolecular NMR.

[14]  B. Meier,et al.  Characterization of different water pools in solid-state NMR protein samples , 2009, Journal of biomolecular NMR.

[15]  L. A. Day,et al.  Filamentous phage studied by magic-angle spinning NMR: resonance assignment and secondary structure of the coat protein in Pf1. , 2007, Journal of the American Chemical Society.

[16]  Keiichi Namba,et al.  Direct visualization of secondary structures of F-actin by electron cryomicroscopy , 2010, Nature.

[17]  C. Griesinger,et al.  Protein refolding is required for assembly of the type three secretion needle , 2010, Nature Structural &Molecular Biology.

[18]  Tatyana Polenova,et al.  Solid-state NMR studies of HIV-1 capsid protein assemblies. , 2010, Journal of the American Chemical Society.

[19]  David Baker,et al.  A conserved structural motif mediates formation of the periplasmic rings in the type III secretion system , 2009, Nature Structural &Molecular Biology.

[20]  D. Baker,et al.  Simultaneous prediction of protein folding and docking at high resolution , 2009, Proceedings of the National Academy of Sciences.

[21]  Hans Wolf-Watz,et al.  Protein delivery into eukaryotic cells by type III secretion machines , 2006, Nature.

[22]  Wei Zhang,et al.  Combining X-Ray Crystallography and Electron Microscopy , 2005, Structure.

[23]  Wayne Boucher,et al.  The CCPN data model for NMR spectroscopy: Development of a software pipeline , 2005, Proteins.

[24]  C. Sasakawa,et al.  Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors , 2000, The EMBO journal.

[25]  E. Nogales,et al.  Nucleotide-dependent bending flexibility of tubulin regulates microtubule assembly , 2005, Nature.

[26]  G. Cornelis,et al.  The type III secretion injectisome , 2006, Nature Reviews Microbiology.

[27]  W. Picking,et al.  The Needle Component of the Type III Secreton of Shigella Regulates the Activity of the Secretion Apparatus* , 2005, Journal of Biological Chemistry.

[28]  Wah Chiu,et al.  Cryo-EM of macromolecular assemblies at near-atomic resolution , 2010, Nature Protocols.

[29]  Niels Volkmann,et al.  Docking of atomic models into reconstructions from electron microscopy. , 2003, Methods in enzymology.

[30]  R. Griffin,et al.  Proton assisted insensitive nuclei cross polarization. , 2007, Journal of the American Chemical Society.

[31]  S. Becker,et al.  Supramolecular interactions probed by 13C-13C solid-state NMR spectroscopy. , 2010, Journal of the American Chemical Society.

[32]  E. Egelman,et al.  The structure of the Salmonella typhimurium type III secretion system needle shows divergence from the flagellar system. , 2010, Journal of molecular biology.

[33]  J. Galán,et al.  Supramolecular structure of the Salmonella typhimurium type III protein secretion system. , 1998, Science.

[34]  Nikolaus M. Szeverenyi,et al.  Observation of spin exchange by two-dimensional fourier transform 13C cross polarization-magic-angle spinning , 1982 .

[35]  Beat H. Meier,et al.  Amyloid Fibrils of the HET-s(218–289) Prion Form a β Solenoid with a Triangular Hydrophobic Core , 2008, Science.

[36]  P. Davis,et al.  Putting the pieces together. , 2021, Occupational health & safety.