Phase-fitted Runge-Kutta pairs of orders 8(7)
暂无分享,去创建一个
Theodore E. Simos | Ioannis Th. Famelis | Charalampos Tsitouras | T. Simos | C. Tsitouras | I. Famelis
[1] P. Brown. A local convergence theory for combined inexact-Newton/finite-difference projection methods , 1987 .
[2] Charalampos Tsitouras,et al. Cheap Error Estimation for Runge-Kutta Methods , 1999, SIAM J. Sci. Comput..
[3] E. Hairer,et al. Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .
[4] R. Van Dooren. Stabilization of Cowell's classical finite difference method for numerical integration , 1974 .
[5] George Papageorgiou,et al. Runge-Kutta pairs for periodic initial value problems , 2005, Computing.
[6] J. Butcher. The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .
[7] P. J. Van Der Houmen,et al. Predictor-corrector methods for periodic second-order initial-value problems , 1987 .
[8] S. N. Papakostas,et al. High Phase-Lag-Order Runge-Kutta and Nyström Pairs , 1999, SIAM J. Sci. Comput..
[9] J. Dormand,et al. High order embedded Runge-Kutta formulae , 1981 .
[10] E. Hairer,et al. Solving Ordinary Differential Equations I , 1987 .
[11] A. D. Raptis,et al. A four-step phase-fitted method for the numerical integration of second order initial-value problems , 1991 .
[12] W. Gautschi. Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .
[13] Ben P. Sommeijer,et al. Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .
[14] E. Hairer,et al. Solving Ordinary Differential Equations II , 2010 .
[15] Theodore E. Simos,et al. Explicit high order methods for the numerical integration of periodic initial-value problems , 1998, Appl. Math. Comput..
[16] T. E. Simos,et al. A P-Stable Eighth-Order Method for the Numerical Integration of Periodic Initial-Value Problems , 1997 .
[17] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .