Projection Savings in CT-based Digital Volume Correlation

The measurement of three dimensional displacement fields from tomographic image registration, or Digital Volume Correlation, usually operates over two volumes that have been reconstructed from numerous radiographs at the elementary voxel scale. It is shown herein that a single “reference” (i.e., fully reconstructed) volume, and very few radiographs of the deformed configuration may be sufficient to evaluate 3D displacement fields. The proposed algorithm can reduce the needed number of projection data by several orders of magnitude as shown on an experimental data set.

[1]  J. Buffière,et al.  Three-dimensional grain mapping by x-ray diffraction contrast tomography and the use of Friedel pairs in diffraction data analysis. , 2009, The Review of scientific instruments.

[2]  Stéphane Roux,et al.  Digital Image Correlation , 2012 .

[3]  P. Cloetens,et al.  X-ray micro-tomography an attractive characterisation technique in materials science , 2003 .

[4]  S. Roux,et al.  Comparison of Local and Global Approaches to Digital Image Correlation , 2012 .

[5]  S. Wilkins,et al.  X-ray phase-contrast microscopy and microtomography. , 2003, Optics express.

[6]  Satoru Yoneyama,et al.  DIGITAL IMAGE CORRELATION , 2011 .

[7]  Stéphane Roux,et al.  Localized strain field measurement on laminography data with mechanical regularization , 2014 .

[8]  François Hild,et al.  A space–time approach in digital image correlation: Movie-DIC , 2011 .

[9]  Dominique Jeulin,et al.  Mesure tridimensionnelle de champs cinématiques par imagerie volumique pour l'analyse des matériaux et des structures , 2004 .

[10]  S. Roux,et al.  Analysis of image series through global digital image correlation , 2012 .

[11]  Peter Cloetens,et al.  Characterization of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography , 1999 .

[12]  Stéphane Roux,et al.  Digital volume correlation: what are the limits to the spatial resolution? , 2012 .

[13]  Stéphane Roux,et al.  Digital volume correlation analyses of synchrotron tomographic images , 2011 .

[14]  E. Maire,et al.  Three-dimensional analysis of a compression test on stone wool , 2009 .

[15]  J. Meixner,et al.  S. Flügge, Herausgeber: Handbuch der Physik, Band III/3: Die nicht‐linearen Feldtheorien der Mechanik. Von C. Truesdell und W. Noll. Springer‐Verlag, Berlin/Heidelberg/New York 1965. VIII/602 Seiten. Preis: 198,‐ DM , 1967, Berichte der Bunsengesellschaft für physikalische Chemie.

[16]  P. Cloetens,et al.  Advances in synchrotron radiation microtomography , 2006 .

[17]  Stéphane Roux,et al.  Multiscale displacement field measurements of compressed mineral-wool samples by digital image correlation. , 2002, Applied optics.

[18]  Stuart R. Stock,et al.  Direct observation of crack opening as a function of applied load in the interior of a notched tensile sample of AlLi 2090 , 1997 .

[19]  M. De Handbuch der Physik , 1957 .

[20]  José Baruchel,et al.  X-Ray Tomography in Material Science , 2000 .

[21]  B. Bay,et al.  Digital volume correlation: Three-dimensional strain mapping using X-ray tomography , 1999 .

[22]  S. Roux,et al.  Mechanics-aided digital image correlation , 2013 .

[23]  E. Maire,et al.  In Situ Experiments with X ray Tomography: an Attractive Tool for Experimental Mechanics , 2010 .

[24]  S. Roux,et al.  Three dimensional image correlation from X-Ray computed tomography of solid foam , 2007, 0712.2642.

[25]  Walter Reimers,et al.  In‐Situ Synchrotron X‐Ray Microtomography Studies of Microstructure and Damage Evolution in Engineering Materials , 2007 .

[26]  Stéphane Roux,et al.  Voxel-Scale Digital Volume Correlation , 2011 .

[27]  M. M. Rashid,et al.  Digital volume correlation including rotational degrees of freedom during minimization , 2002 .

[28]  M. Glas,et al.  Principles of Computerized Tomographic Imaging , 2000 .

[29]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[30]  Peter Cloetens,et al.  Nanoscale zoom tomography with hard x rays using Kirkpatrick-Baez optics , 2007 .

[31]  Christian G. Schroer,et al.  Hard and Soft X‐Ray Microscopy and Tomography in Catalysis: Bridging the Different Time and Length Scales , 2011 .

[32]  M. Suéry,et al.  Ultra Fast In Situ X-Ray Micro-Tomography: Application to Solidification of Aluminium Alloys , 2012 .

[33]  Hubert W. Schreier,et al.  Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications , 2009 .

[34]  Dominique Bernard,et al.  3D imaging in material science: Application of X-ray tomography , 2010 .