Three-dimensional nanotransmission lines at optical frequencies: A recipe for broadband negative-refraction optical metamaterials

We apply the optical nanocircuit concepts to design and analyze in detail a three-dimensional (3D) plasmonic nanotransmission line network that may act as a relatively broadband negative-refraction metamaterial at infrared and optical frequencies. After discussing the heuristic concepts in our theory, we show full-wave analytical results of the expected behavior of such materials, which show increased bandwidth and relative robustness to losses. The possibility and constraints of getting a 3D fully isotropic response are also explored and conditions for minimal losses and increased bandwidth are discussed. Full-wave analytical results for some design examples employing realistic plasmonic materials at infrared and optical frequencies are also presented, and the case of a subwavelength imaging system using a slab of this material is numerically investigated.

[1]  V. Backman,et al.  Engineering sub-100 nm multi-layer nanoshells , 2006 .

[2]  N. Engheta,et al.  Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines , 2006, physics/0609061.

[3]  U. Chettiar,et al.  Negative index metamaterial combining magnetic resonators with metal films. , 2006, Optics express.

[4]  J. Lee,et al.  Drilling nanoholes in colloidal spheres by selective etching , 2006 .

[5]  M. Wegener,et al.  Simultaneous Negative Phase and Group Velocity of Light in a Metamaterial , 2006, Science.

[6]  Yaroslav A. Urzhumov,et al.  Negative index meta-materials based on two-dimensional metallic structures , 2006 .

[7]  G. Eleftheriades,et al.  Volumetric layered transmission-line metamaterial exhibiting a negative refractive index , 2006 .

[8]  Nader Engheta,et al.  Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes , 2006, physics/0603052.

[9]  Kevin J. Malloy,et al.  Demonstration of metal-dielectric negative-index metamaterials with improved performance at optical frequencies , 2006 .

[10]  M. Silveirinha Nonlocal homogenization model for a periodic array of epsilon-negative rods. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  S. Tretyakov,et al.  Experimental verification of the key properties of a three-dimensional isotropic transmission-line superlens , 2006, physics/0601056.

[12]  M. Silveirinha Additional boundary condition for the wire medium , 2005, IEEE Transactions on Antennas and Propagation.

[13]  S. Tretyakov,et al.  Three-dimensional isotropic perfect lens based on LC-loaded transmission lines , 2005, physics/0509149.

[14]  N Engheta,et al.  Negative effective permeability and left-handed materials at optical frequencies. , 2004, Optics express.

[15]  E. N. Economou,et al.  Saturation of the magnetic response of split-ring resonators at optical frequencies. , 2005, Physical review letters.

[16]  Tatsuo Itoh,et al.  Electromagnetic metamaterials : transmission line theory and microwave applications : the engineering approach , 2005 .

[17]  A. Grbic,et al.  An isotropic three-dimensional negative-refractive-index transmission-line metamaterial , 2005 .

[18]  K. Balmain,et al.  Negative Refraction Metamaterials: Fundamental Principles and Applications , 2005 .

[19]  M. Wegener,et al.  Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials. , 2005, Optics letters.

[20]  Pekka Ikonen,et al.  Canalization of subwavelength images by electromagnetic crystals , 2005 .

[21]  L. Zschiedrich,et al.  Magnetic metamaterials at telecommunication and visible frequencies. , 2005, Physical review letters.

[22]  K. Malloy,et al.  Experimental demonstration of near-infrared negative-index metamaterials. , 2005, Physical review letters.

[23]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.

[24]  U. Chettiar,et al.  Negative index of refraction in optical metamaterials. , 2005, Optics letters.

[25]  P. Belov,et al.  Homogenization of electromagnetic crystals formed by uniaxial resonant scatterers. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  H. Kurz,et al.  Transmission of THz radiation through InSb gratings of subwavelength apertures. , 2005, Optics express.

[27]  G. Shvets,et al.  Electric and magnetic properties of sub-wavelength plasmonic crystals , 2005 .

[28]  C. Fernandes,et al.  A new acceleration technique with exponential convergence rate to evaluate periodic Green functions , 2005, IEEE Transactions on Antennas and Propagation.

[29]  Andrea Alù,et al.  Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. , 2004, Physical review letters.

[30]  N. Engheta,et al.  Polarizabilities and effective parameters for collections of spherical nanoparticles formed by pairs of concentric double-negative, single-negative, and∕or double-positive metamaterial layers , 2004, physics/0410011.

[31]  Steven G. Johnson,et al.  Subwavelength imaging in photonic crystals , 2003 .

[32]  S. Tretyakov,et al.  Strong spatial dispersion in wire media in the very large wavelength limit , 2002, cond-mat/0211204.

[33]  G. Eleftheriades,et al.  Planar negative refractive index media using periodically L-C loaded transmission lines , 2002 .

[34]  Tatsuo Itoh,et al.  Forward coupling phenomena between artificial left-handed transmission lines , 2002 .

[35]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[36]  Rodger M. Walser,et al.  Electromagnetic metamaterials , 2001, SPIE Optics + Photonics.

[37]  Sergei A. Tretyakov,et al.  Line of periodically arranged passive dipole scatterers , 2000 .

[38]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[39]  Stephan Link,et al.  Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles , 1999 .

[40]  P. Barber Absorption and scattering of light by small particles , 1984 .

[41]  V. Agranovich,et al.  Crystal Optics with Spatial Dispersion and Excitons , 1984 .

[42]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[43]  P. Shaffer Refractive index, dispersion, and birefringence of silicon carbide polytypes. , 1971, Applied optics.

[44]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[45]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[46]  V. Veselago,et al.  Электродинамика веществ с одновременно отрицательными значениями ε и μ , 1967 .

[47]  L. J. Chu Physical Limitations of Omni‐Directional Antennas , 1948 .

[48]  Gabriel Kron,et al.  Equivalent Circuits to Represent the Electromagnetic Field Equations , 1943 .

[49]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[50]  SCATTERING-MATRIX ANALYSIS OF 1D, 2D, AND 3D ARRAYS OF ACOUSTIC MONOPOLES AND ELECTROMAGNETIC DIPOLES , .