Alternative Approach to Convolution Term of Viscoelasticity in Equations of Unsteady Pipe Flow

In the paper, the selected aspects concerning description of viscoelastic behavior of pipe walls during unsteady flow are analyzed. The alternative convolution expression of the viscoelastic term is presented and compared with the corresponding term referring to unsteady friction. Both approaches indicate similarities in the forms of impulse response functions and the parameter properties. The flow memory was introduced into convolution and its impact on the solution was analyzed. To reduce the influence of the numerical errors, implicit Preissmann scheme was applied. The calculation results were verified based on laboratory tests. The study indicated that the flow memory is related to pipe material properties and significantly influences the calculation results. It also showed the role of retardation time in calculations and its relation to flow memory. The proposed approach enabled more detailed analysis of viscoelasticity impact on the pressure characteristics.

[1]  Heinz Herwig,et al.  Loss Coefficients for Periodically Unsteady Flows in Conduit Components: Illustrated for Laminar Flow in a Circular Duct and a 90 Degree Bend , 2013 .

[2]  Luisa Fernanda Ribeiro Reis,et al.  Leak detection by inverse transient analysis in an experimental PVC pipe system , 2011 .

[3]  Martin F. Lambert,et al.  Parameters affecting water-hammer wave attenuation, shape and timing—Part 1: Mathematical tools , 2008 .

[4]  Giuseppe Pezzinga,et al.  Unsteady Flow in Installations with Polymeric Additional Pipe , 1995 .

[5]  Warren P. Mason,et al.  Introduction to polymer viscoelasticity , 1972 .

[6]  Romuald Szymkiewicz,et al.  Alternative Convolution Approach to Friction in Unsteady Pipe Flow , 2014 .

[7]  Giuseppe Pezzinga Local Balance Unsteady Friction Model , 2009 .

[8]  Yeou-Koung Tung,et al.  Unsteady friction and visco-elasticity in pipe fluid transients , 2010 .

[9]  Luisa Fernanda Ribeiro Reis,et al.  Analysis of PVC Pipe-Wall Viscoelasticity during Water Hammer , 2008 .

[10]  R. Szymkiewicz Numerical Modeling in Open Channel Hydraulics , 2010 .

[11]  Bryan W. Karney,et al.  Velocity Profiles and Unsteady Pipe Friction in Transient Flow , 2000 .

[12]  Huan-Feng Duan,et al.  Further Developments in Rapidly Decelerating Turbulent Pipe Flow Modeling , 2014 .

[13]  C. Maksimovic,et al.  The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part I—experimental analysis and creep characterization , 2004 .

[14]  Bruno Brunone,et al.  Wall Shear Stress in Transient Turbulent Pipe Flow by Local Velocity Measurement , 2010 .

[15]  V. T. Chow Handbook of applied hydrology , 2017 .

[16]  Helena M. Ramos,et al.  Surge damping analysis in pipe systems: modelling and experiments Effet d'atténuation du coup de bélier dans les systèmes de conduits: modelation mathématique et expériences , 2004 .

[17]  Hanif M. Chaudhry,et al.  Applied Hydraulic Transients , 1979 .

[18]  Alan Vardy,et al.  A characteristics model of transient friction in pipes , 1991 .

[19]  Silvia Meniconi,et al.  Energy dissipation and pressure decay during transients in viscoelastic pipes with an in-line valve , 2014 .

[20]  Silvia Meniconi,et al.  Water-hammer pressure waves interaction at cross-section changes in series in viscoelastic pipes , 2012 .

[21]  A. Vardy,et al.  Transient turbulent friction in fully rough pipe flows , 2004 .

[22]  Min Pan,et al.  Use of Pipeline Wave Propagation Model for Measuring Unsteady Flowrate , 2010 .

[23]  Torbjørn K. Nielsen,et al.  Transient Friction in Pressurized Pipes. II: Two-Coefficient Instantaneous Acceleration–Based Model , 2011 .

[24]  A. Vardy,et al.  TRANSIENT TURBULENT FRICTION IN SMOOTH PIPE FLOWS , 2003 .

[25]  Angus R. Simpson,et al.  Systematic Evaluation of One-Dimensional Unsteady Friction Models in Simple Pipelines , 2006 .

[26]  J. Cunge,et al.  Practical aspects of computational river hydraulics , 1980 .

[27]  M. Hanif Chaudhry,et al.  Unsteady Friction in Rough Pipes , 2001 .

[28]  W. Zielke Frequency dependent friction in transient pipe flow , 1968 .

[29]  Huan-Feng Duan,et al.  Relevance of Unsteady Friction to Pipe Size and Length in Pipe Fluid Transients , 2012 .

[30]  Mohamed Salah Ghidaoui,et al.  A Review of Water Hammer Theory and Practice , 2005 .

[31]  Silvia Meniconi,et al.  Two-Dimensional Features of Viscoelastic Models of Pipe Transients , 2014 .

[32]  Kamil Urbanowicz,et al.  IMPROVED METHOD FOR SIMULATING TRANSIENTS OF TURBULENT PIPE FLOW , 2011 .

[33]  Cedo Maksimovic,et al.  The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II—model development, calibration and verification , 2005 .

[34]  J. Ferry Viscoelastic properties of polymers , 1961 .

[35]  Ahmad Ahmadi,et al.  Fluid-structure interaction with pipe-wall viscoelasticity during water hammer , 2011 .

[36]  M. Greco,et al.  Effects of Two-Dimensionality on Pipe Transients Modeling , 1995 .

[37]  M. L. Williams,et al.  THE STRUCTURAL ANALYSIS OF VISCOELASTIC MATERIALS , 1963 .

[38]  Katsumasa Suzuki,et al.  Improving Zielke’s Method of Simulating Frequency-Dependent Friction in Laminar Liquid Pipe Flow , 1991 .

[39]  Ahmad Ahmadi,et al.  Waterhammer modelling of viscoelastic pipes with a time-dependent Poisson's ratio , 2013 .

[40]  P. Kłosowski,et al.  Finite element description of nonlinear viscoelastic behaviour of technical fabric , 2009 .

[41]  Zhipeng Duan,et al.  Pressure Drop for Fully Developed Turbulent Flow in Circular and Noncircular Ducts , 2012 .

[42]  Giuseppe Pezzinga,et al.  QUASI-2D MODEL FOR UNSTEADY FLOW IN PIPE NETWORKS , 1999 .

[43]  J. Vítkovský,et al.  Developments in unsteady pipe flow friction modelling , 2001 .

[44]  Alan Vardy,et al.  Efficient approximation of -unsteady friction weighting functions , 2004 .