Modelling the biomechanical behaviour of growing trees at the forest stand scale. Part I: Development of an Incremental Transfer Matrix Method and application to simplified tree structures

Les defauts de rectitude des tiges sont souvent associes a des heterogeneites structurelles du bois via des phenomenes de tropismes. Cet article presente un modele numerique de simulation du comportement biomecanique des arbres en croissance. Une description simplifiee de la structure, considerant separement le tronc et le houppier, a ete adoptee afin de permettre des calculs futurs a l'echelle du peuplement forestier. Le modele numerique est base sur une formulation incrementale de la Methode des Matrices de Transfert permettant de tenir compte de l'evolution de l'etat mecanique du tronc tout au long de la croissance de l'arbre. Le modele prend en compte les deformations dues au poids propre de la structure, mais aussi les phenomenes de redressement associes aux deformations de maturation du bois de reaction. Ce modele a ete implante dans le logiciel CAPSIS. Les resultats numeriques ont ete compares a ceux obtenus en utilisant le logiciel AMAPpara. Ce dernier utilise un modele biomecanique reposant sur une description detaillee de l'architecture de l'arbre. Les limites d'une description simplifiee de la structure, qui sera utile pour des calculs a l'echelle du peuplement forestier, sont discutees.

[1]  Thierry Fourcaud,et al.  Numerical modelling of shape regulation and growth stresses in trees , 2003, Trees.

[2]  Henri Baillères,et al.  Tree biomechanics : growth, cumulative prestresses, and reorientations , 1994 .

[3]  Paula Soares,et al.  Modelling Forest Systems , 2003 .

[4]  B. Courbaud,et al.  Evaluating thinning strategies using a tree distance dependent growth model: some examples based on the CAPSIS software “uneven-aged spruce forests” module , 2001 .

[5]  Prof. Dr. Francis Hallé,et al.  Tropical Trees and Forests , 1978, Springer Berlin Heidelberg.

[6]  P. Gillis Theory of Growth Stresses , 1973 .

[7]  Harold E. Burkhart,et al.  Distance-Dependent Competition Measures for Predicting Growth of Individual Trees , 1989, Forest Science.

[8]  Jun-Li Yang,et al.  Growth stress, its measurement and effects , 2001 .

[9]  T. Pukkala Methods to describe the competition process in a tree stand , 1989 .

[10]  Masato Yoshida,et al.  Tension wood and growth stress induced by artificial inclination in Liriodendron tulipifera Linn. and Prunus spachiana Kitamura f. ascendens Kitamura , 2000 .

[11]  Philippe de Reffye,et al.  A functional model of tree growth and tree architecture , 1997 .

[12]  J Digby,et al.  The gravitropic set-point angle (GSA): the identification of an important developmentally controlled variable governing plant architecture. , 1995, Plant, cell & environment.

[13]  Guillaume Cornu,et al.  CAPSIS: Computer-aided projection for strategies in silviculture : Advantages of a shared forest-modelling platform , 2002 .

[14]  R. Milne,et al.  The elasticity and vertical distribution of stress within stems of Picea sitchensis. , 1989, Tree physiology.

[15]  E. David Ford,et al.  Theory and Models of Inter-Plant Competition as a Spatial Process , 1992 .

[16]  P. West,et al.  Stresses in, and the shape of, tree stems in forest monoculture , 1989 .

[17]  B. Gartner,et al.  Lean in red alder (Alnus rubra) : growth stress, tension wood, and righting response , 1996 .

[18]  M. Fournier,et al.  Growth stress patterns in tree stems A model assuming evolution with the tree age of maturation strains , 2022 .

[19]  M. Cannell,et al.  Shape of tree stems-a re-examination of the uniform stress hypothesis. , 1994, Tree physiology.

[20]  M. Cannell,et al.  Diameters and dry weights of tree shoots: effects of Young's modulus, taper, deflection and angle. , 1988, Tree physiology.

[21]  E. David Ford,et al.  A Model of Competition Incorporating Plasticity through Modular Foliage and Crown Development , 1993 .

[22]  Dr. Robert R. Archer,et al.  Growth Stresses and Strains in Trees , 1987, Springer Series in Wood Science.

[23]  Hiroyuki Yamamoto,et al.  Growth stress controls negative gravitropism in woody plant stems , 2002, Planta.

[24]  François de Coligny,et al.  Simulating radiation distribution in a heterogeneous Norway spruce forest on a slope , 2003 .

[25]  B. Lemoine,et al.  Growth and yield of maritime pine (Pinus pinaster Ait): the average dominant tree of the stand , 1991 .

[26]  M. Cannell,et al.  Support costs of different branch designs: effects of position, number, angle and deflection of laterals. , 1988, Tree physiology.

[27]  T. E. Timell Compression Wood in Gymnosperms , 1986 .

[28]  Philippe Ancelin Modélisation du comportement biomécanique de l'arbre dans son environnement forestier : application au pin maritime , 2001 .

[29]  B. Gardiner,et al.  Comparison of two models for predicting the critical wind speeds required to damage coniferous trees , 2000 .

[30]  M. Cannell,et al.  Structural analysis of tree trunks and branches: tapered cantilever beams subject to large deflections under complex loading. , 1987, Tree physiology.

[31]  F. Houllier,et al.  Modelling the profile and internal structure of tree stem. Application to Cedrus atlantica (Manetti) , 2002 .

[32]  H. Peltola,et al.  Model computations on the critical combination of snow loading and windspeed for snow damage of scots pine, Norway spruce and Birch sp. at stand edge , 1997 .

[33]  P Castéra,et al.  Growth patterns and bending mechanics of branches , 1991, Trees.

[34]  Thierry Fourcaud,et al.  The french project SICRODEF : a chain of simulators from the tree growth to the distortion of boards due to the release of growth stresses during sawing : first results , 1999 .

[35]  A. Cescatti Modelling the radiative transfer in discontinuous canopies of asymmetric crowns. I. Model structure and algorithms , 1997 .

[36]  Gregory S. Biging,et al.  Evaluation of Competition Indices in Individual Tree Growth Models , 1995, Forest Science.

[37]  Stephen P. Timoshenko Resistance des materiaux , 1968 .

[38]  François Houllier,et al.  Essai sur les relations entre l'architecture d'un arbre et la grosseur de ses axes végétatifs , 1997 .

[39]  B. Courbaud,et al.  Polyhedral representation of crown shape. A geometric tool for growth modelling , 1995 .