Synaptic electronics and neuromorphic computing

In order to map the computing architecture and intelligent functions of the human brain on hardware, we need electronic devices that can emulate biological synapses and even neurons, preferably at the physical level. Beginning with the history of neuromorphic computation, in this article, we will briefly review the architecture of the brain and the learning mechanisms responsible for its plasticity. We will also introduce several memristive devices that have been used to implement electronic synapses, presenting some important milestones in this area of research and discussing their advantages, disadvantages, and future prospects.

[1]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[2]  Weisheng Zhao,et al.  Electrical Modeling of Stochastic Spin Transfer Torque Writing in Magnetic Tunnel Junctions for Memory and Logic Applications , 2013, IEEE Transactions on Magnetics.

[3]  M. Lynch,et al.  Long-term potentiation and memory. , 2004, Physiological reviews.

[4]  Kang L. Wang,et al.  Effect of resistance-area product on spin-transfer switching in MgO-based magnetic tunnel junction memory cells , 2011 .

[5]  Andreas Mayr,et al.  CrossNets: High‐Performance Neuromorphic Architectures for CMOL Circuits , 2003, Annals of the New York Academy of Sciences.

[6]  R. Malenka,et al.  An essential role for protein phosphatases in hippocampal long-term depression. , 1993, Science.

[7]  D. Ielmini,et al.  Study of Multilevel Programming in Programmable Metallization Cell (PMC) Memory , 2009, IEEE Transactions on Electron Devices.

[8]  Narayan Srinivasa,et al.  A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. , 2012, Nano letters.

[9]  Shimeng Yu,et al.  Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM) , 2011, IEEE Transactions on Electron Devices.

[10]  Xuanyao Fong,et al.  Spin-Transfer Torque MRAMs for Low Power Memories: Perspective and Prospective , 2012, IEEE Sensors Journal.

[11]  Wulfram Gerstner,et al.  A History of Spike-Timing-Dependent Plasticity , 2011, Front. Syn. Neurosci..

[12]  Richard C. Atkinson,et al.  Human Memory: A Proposed System and its Control Processes , 1968, Psychology of Learning and Motivation.

[13]  Dharmendra S. Modha,et al.  The cat is out of the bag: cortical simulations with 109 neurons, 1013 synapses , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[14]  K. Jellinger,et al.  The Human Nervous System Structure and Function, 6th edn , 2009 .

[15]  Dharmendra S. Modha,et al.  A digital neurosynaptic core using embedded crossbar memory with 45pJ per spike in 45nm , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[16]  John von Neumann,et al.  First draft of a report on the EDVAC , 1993, IEEE Annals of the History of Computing.

[17]  Kang L. Wang,et al.  Low-power non-volatile spintronic memory: STT-RAM and beyond , 2013 .

[18]  Ennio Mingolla,et al.  From Synapses to Circuitry: Using Memristive Memory to Explore the Electronic Brain , 2011, Computer.

[19]  Leon O. Chua,et al.  Memristor Networks , 2014, Springer International Publishing.

[20]  Yong Liu,et al.  Specifications of Nanoscale Devices and Circuits for Neuromorphic Computational Systems , 2013, IEEE Transactions on Electron Devices.

[21]  Olivier Bichler,et al.  Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction , 2011, 2011 International Electron Devices Meeting.

[22]  Kwabena Boahen NEUROGRID: Emulating a million neurons in the cortex , 2010, Neuroscience Research.

[23]  Johan Åkerman,et al.  Toward a Universal Memory , 2005, Science.

[24]  A. Pereda,et al.  Electrical synapses and their functional interactions with chemical synapses , 2014, Nature Reviews Neuroscience.

[25]  Sarma Vrudhula,et al.  Incremental resistance programming of programmable metallization cells for use as electronic synapses , 2014 .

[26]  M. Breitwisch Phase Change Memory , 2008, 2008 International Interconnect Technology Conference.

[27]  Massimiliano Versace,et al.  The brain of a new machine , 2010, IEEE Spectrum.

[28]  D. Strukov,et al.  CMOL: Devices, Circuits, and Architectures , 2006 .

[29]  Jun Yang,et al.  Energy reduction for STT-RAM using early write termination , 2009, 2009 IEEE/ACM International Conference on Computer-Aided Design - Digest of Technical Papers.

[30]  Yu-Fen Wang,et al.  Characterization and Modeling of Nonfilamentary Ta/TaOx/TiO2/Ti Analog Synaptic Device , 2015, Scientific Reports.

[31]  Carver A. Mead,et al.  A single-transistor silicon synapse , 1996 .

[32]  H. Ohno,et al.  Single-shot time-resolved measurements of nanosecond-scale spin-transfer induced switching: stochastic versus deterministic aspects. , 2008, Physical review letters.

[33]  Yong Liu,et al.  A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons , 2011, 2011 IEEE Custom Integrated Circuits Conference (CICC).

[34]  T. Sejnowski,et al.  Induction of synaptic plasticity by Hebbian covariance in the Hippocampus , 1989 .

[35]  M. Kozicki,et al.  Electrochemical metallization cells—blending nanoionics into nanoelectronics? , 2012 .

[36]  D. Ielmini Filamentary-switching model in RRAM for time, energy and scaling projections , 2011, 2011 International Electron Devices Meeting.

[37]  S. Lai,et al.  Current status of the phase change memory and its future , 2003, IEEE International Electron Devices Meeting 2003.

[38]  U. Ganguly,et al.  Memristive synaptic plasticity in Pr0.7Ca0.3MnO3 RRAM by bio-mimetic programming , 2014, 72nd Device Research Conference.

[39]  C. Noback,et al.  The Human Nervous System: Structure and Function , 1996 .

[40]  W. Levy,et al.  Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus , 1983, Neuroscience.

[41]  S. Wang,et al.  Graded bidirectional synaptic plasticity is composed of switch-like unitary events. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Rodrigo Alvarez-Icaza,et al.  Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations , 2014, Proceedings of the IEEE.

[43]  T. Hasegawa,et al.  Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. , 2011, Nature materials.

[44]  Rylan Kautz,et al.  Two-terminal proton conducting devices with synaptic behavior and memory , 2014, 72nd Device Research Conference.

[45]  Johannes Schemmel,et al.  A comprehensive workflow for general-purpose neural modeling with highly configurable neuromorphic hardware systems , 2010, Biological Cybernetics.

[46]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[47]  Jim D. Garside,et al.  Overview of the SpiNNaker System Architecture , 2013, IEEE Transactions on Computers.

[48]  A. M. Turing,et al.  The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life plus The Secrets of Enigma , 2004 .

[49]  Kwabena Boahen,et al.  Silicon-Neuron Design: A Dynamical Systems Approach , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[50]  Carver Mead,et al.  Analog VLSI and neural systems , 1989 .

[51]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[52]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[53]  R. Schaller,et al.  Moore's law: past, present and future , 1997 .

[54]  M. Bennett,et al.  Electrical Coupling and Neuronal Synchronization in the Mammalian Brain , 2004, Neuron.

[55]  Kaushik Roy,et al.  Exploring Spin Transfer Torque Devices for Unconventional Computing , 2015, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[56]  T. W. Hickmott,et al.  BISTABLE SWITCHING IN NIOBIUM OXIDE DIODES , 1965 .

[57]  F. Zeng,et al.  Synaptic plasticity and learning behaviours mimicked through Ag interface movement in an Ag/conducting polymer/Ta memristive system , 2013 .

[58]  H. Markram The Blue Brain Project , 2006, Nature Reviews Neuroscience.

[59]  Daniel D. Lee,et al.  Equilibrium properties of temporally asymmetric Hebbian plasticity. , 2000, Physical review letters.

[60]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[61]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[62]  Jintao Yu,et al.  Memristive devices for computing: Beyond CMOS and beyond von Neumann , 2017, 2017 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC).

[63]  Stanford R. Ovshinsky,et al.  Innovation Providing New Multiple Functions in Phase-Change Materials To Achieve Cognitive Computing , 2003 .

[64]  Kinam Kim,et al.  Phase-Change Behavior of Stoichiometric Ge2Sb2Te5 in Phase-Change Random Access Memory , 2007 .

[65]  M. Alexander,et al.  Principles of Neural Science , 1981 .

[66]  David F. Hendry,et al.  The computer as von Neumann planned it , 1993, IEEE Annals of the History of Computing.

[67]  Paul E. Hasler,et al.  Single transistor learning synapse with long term storage , 1995, Proceedings of ISCAS'95 - International Symposium on Circuits and Systems.

[68]  H.C. Anderson Neural network machines , 1989, IEEE Potentials.

[69]  Neng Wan,et al.  Resistive Switching: Real‐Time Observation on Dynamic Growth/Dissolution of Conductive Filaments in Oxide‐Electrolyte‐Based ReRAM (Adv. Mater. 14/2012) , 2012 .

[70]  Bernabé Linares-Barranco,et al.  On Spike-Timing-Dependent-Plasticity, Memristive Devices, and Building a Self-Learning Visual Cortex , 2011, Front. Neurosci..

[71]  L.O. Chua,et al.  Memristive devices and systems , 1976, Proceedings of the IEEE.

[72]  R. O’Reilly Biologically Based Computational Models of High-Level Cognition , 2006, Science.

[73]  James M. Daughton Advanced MRAM Concepts , 2001 .

[74]  Wofgang Maas,et al.  Networks of spiking neurons: the third generation of neural network models , 1997 .

[75]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[76]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[77]  Tim Gollisch,et al.  Modeling Single-Neuron Dynamics and Computations: A Balance of Detail and Abstraction , 2006, Science.

[78]  Jinfeng Kang,et al.  Investigation of the synaptic device based on the resistive switching behavior in hafnium oxide , 2015 .

[79]  D. McCandless Fundamental neuroscience , 1997, Metabolic Brain Disease.

[80]  Konstantin K. Likharev,et al.  Neuromorphic CMOL circuits , 2003, 2003 Third IEEE Conference on Nanotechnology, 2003. IEEE-NANO 2003..

[81]  T. Serrano-Gotarredona,et al.  A Proposal for Hybrid Memristor-CMOS Spiking Neuromorphic Learning Systems , 2013, IEEE Circuits and Systems Magazine.

[82]  J. Hopfield,et al.  All-or-none potentiation at CA3-CA1 synapses. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[83]  Haim Sompolinsky,et al.  Learning Input Correlations through Nonlinear Temporally Asymmetric Hebbian Plasticity , 2003, The Journal of Neuroscience.

[84]  M. Kozicki,et al.  Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.

[85]  Chris A Mack,et al.  Fifty Years of Moore's Law , 2011, IEEE Transactions on Semiconductor Manufacturing.

[86]  Malgorzata Jurczak,et al.  A Thermally Stable and High-Performance 90-nm ${\rm Al}_{2}{\rm O}_{3}\backslash{\rm Cu}$-Based 1T1R CBRAM Cell , 2013, IEEE Transactions on Electron Devices.

[87]  D. O. Hebb,et al.  The First Stage of Perception: Growth of the Assembly , 2005 .

[88]  The Accounting Review , 1972 .

[89]  Jacques-Olivier Klein,et al.  Spin-Transfer Torque Magnetic Memory as a Stochastic Memristive Synapse for Neuromorphic Systems , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[90]  Daniel S. Margulies,et al.  Prioritizing spatial accuracy in high-resolution fMRI data using multivariate feature weight mapping , 2014, Front. Neurosci..

[91]  Bipin Rajendran,et al.  Novel synaptic memory device for neuromorphic computing , 2014, Scientific Reports.

[92]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[93]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[94]  H.-S. Philip Wong,et al.  Phase Change Memory , 2010, Proceedings of the IEEE.

[95]  R. Symanczyk,et al.  Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20nm , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[96]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[97]  Shimeng Yu,et al.  Modeling the switching dynamics of programmable-metallization-cell (PMC) memory and its application as synapse device for a neuromorphic computation system , 2010, 2010 International Electron Devices Meeting.

[98]  Sungho Kim,et al.  Experimental demonstration of a second-order memristor and its ability to biorealistically implement synaptic plasticity. , 2015, Nano letters.

[99]  Guy Rachmuth,et al.  Transistor analogs of emergent iono‐neuronal dynamics , 2008, HFSP journal.

[100]  Wei D. Lu,et al.  Electrochemical dynamics of nanoscale metallic inclusions in dielectrics , 2014, Nature Communications.

[101]  J. Yang,et al.  Memristive switching mechanism for metal/oxide/metal nanodevices. , 2008, Nature nanotechnology.

[102]  Yuchao Yang,et al.  Memristive Physically Evolving Networks Enabling the Emulation of Heterosynaptic Plasticity , 2015, Advanced materials.

[103]  Mark F. Bear,et al.  The BCM theory of synapse modification at 30: interaction of theory with experiment , 2012, Nature Reviews Neuroscience.

[104]  D. Strukov,et al.  Afterlife for silicon: CMOL circuit architectures , 2005, 5th IEEE Conference on Nanotechnology, 2005..

[105]  Shimeng Yu,et al.  Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems. , 2014, ACS nano.

[106]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[107]  Gregory S. Snider,et al.  Spike-timing-dependent learning in memristive nanodevices , 2008, 2008 IEEE International Symposium on Nanoscale Architectures.

[108]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[109]  Shimeng Yu,et al.  An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation , 2011, IEEE Transactions on Electron Devices.

[110]  Y. Hirose,et al.  Polarity‐dependent memory switching and behavior of Ag dendrite in Ag‐photodoped amorphous As2S3 films , 1976 .

[111]  H. Hwang,et al.  An electrically modifiable synapse array of resistive switching memory , 2009, Nanotechnology.

[112]  Geoffrey W. Burr,et al.  Nanoscale electronic synapses using phase change devices , 2013, JETC.

[113]  M. Mitkova,et al.  Nonvolatile memory based on solid electrolytes , 2004, Proceedings. 2004 IEEE Computational Systems Bioinformatics Conference.

[114]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[115]  Mike Golio,et al.  Fifty Years of Moore's Law , 2015, Proc. IEEE.

[116]  W. J. Wang,et al.  Breaking the Speed Limits of Phase-Change Memory , 2012, Science.

[117]  E. Vianello,et al.  Bio-Inspired Stochastic Computing Using Binary CBRAM Synapses , 2013, IEEE Transactions on Electron Devices.

[118]  Johannes Schemmel,et al.  Live demonstration: A scaled-down version of the BrainScaleS wafer-scale neuromorphic system , 2012, 2012 IEEE International Symposium on Circuits and Systems.

[119]  Rafael Luján The Human Nervous System: Structure and Function, 6th ed., C.R. Noback, N.L. Strominger, R.J. Demarest, D.A. Ruggiero (Eds.). The Humana Press (2005), Price $99.50, ISBN: 1-588-29-039-5 , 2006 .

[120]  Kinam Kim,et al.  A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5-x)/TaO(2-x) bilayer structures. , 2011, Nature materials.

[121]  Mark C. W. van Rossum,et al.  Stable Hebbian Learning from Spike Timing-Dependent Plasticity , 2000, The Journal of Neuroscience.

[122]  V. Misra,et al.  Understanding the gradual reset in Pt/Al2O3/Ni RRAM for synaptic applications , 2015 .

[123]  C. N. Lau,et al.  The mechanism of electroforming of metal oxide memristive switches , 2009, Nanotechnology.

[124]  M. Lankhorst,et al.  Low-cost and nanoscale non-volatile memory concept for future silicon chips , 2005, Nature materials.

[125]  Eugene M Izhikevich,et al.  Hybrid spiking models , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[126]  Massimiliano Di Ventra,et al.  Neuromorphic, Digital, and Quantum Computation With Memory Circuit Elements , 2010, Proceedings of the IEEE.

[127]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[128]  Wulfram Gerstner,et al.  Spike-timing dependent plasticity , 2010, Scholarpedia.

[129]  Christine D. Keating,et al.  Self-assembly of single electron transistors and related devices , 1998 .

[130]  Leon O. Chua Resistance switching memories are memristors , 2011 .

[131]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[132]  M. Pickett,et al.  A scalable neuristor built with Mott memristors. , 2013, Nature materials.

[133]  Byoungil Lee,et al.  Nanoelectronic programmable synapses based on phase change materials for brain-inspired computing. , 2012, Nano letters.

[134]  Yi Ma,et al.  Demonstration of Conductive Bridging Random Access Memory (CBRAM) in logic CMOS process , 2011 .

[135]  Huxley Af,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve. 1952. , 1990 .

[136]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[137]  Byoung Hun Lee,et al.  Nanoscale RRAM-based synaptic electronics: toward a neuromorphic computing device , 2013, Nanotechnology.

[138]  Chiara Bartolozzi,et al.  Synaptic Dynamics in Analog VLSI , 2007, Neural Computation.

[139]  T. W. Hickmott LOW-FREQUENCY NEGATIVE RESISTANCE IN THIN ANODIC OXIDE FILMS , 1962 .

[140]  T. Teyler Long-term potentiation and memory. , 1987, International journal of neurology.

[141]  Chung Lam,et al.  Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array , 2014, Front. Neurosci..

[142]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[143]  Yoon-Ha Jeong,et al.  ReRAM-based synaptic device for neuromorphic computing , 2014, 2014 IEEE International Symposium on Circuits and Systems (ISCAS).

[144]  Masakazu Aono,et al.  Synaptic plasticity and memory functions achieved in a WO3−x-based nanoionics device by using the principle of atomic switch operation , 2013, Nanotechnology.