Modeling Ground-Shell Contact Forces in NATM Tunneling Based on Three-Dimensional Displacement Measurements

AbstractBased on an advanced micromechanics-based nonlinear creep model for shotcrete and thin shell kinematics, measured displacement data are first converted into in-plane stress fields throughout a shotcrete tunnel shell driven according to the New Austrian Tunneling Method (NATM). Subsequently, the partial differential equations for the local force equilibrium in the cylindrical coordinate directions are solved for out-of-plane shell stresses, inclusive of the tractions at the ground-shell interface. Results obtained for an NATM-tunnel driven through clayey ground at moderate depth show that the maximum shear tractions at the ground-shell interface may even exceed the maximum normal tractions (ground pressure). At the same time, even a young top heading tunnel shell may act as an arching thrust. The authors regard this method as a further step in the continously refined of interpretation of displacement measurements stemming from tunnel monitoring systems for the NATM, on a well-defined mechanical bas...

[1]  Franz Pacher Dipl.-Ing. Dr. Baurat h.c. Ground reaction and lining curves / . Gebirgs- und Ausbaukennlinien , 2010 .

[2]  Stefan Scheiner,et al.  Continuum Microviscoelasticity Model for Aging Basic Creep of Early-Age Concrete , 2009 .

[3]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[4]  R. H. Moss,et al.  Development and Laboratory Trials of the Light-Based High-Resolution Target Movement Monitor for Monitoring Convergence at Underground Mines , 2007 .

[5]  Stefan Scheiner,et al.  From micron-sized needle-shaped hydrates to meter-sized shotcrete tunnel shells: micromechanical upscaling of stiffness and strength of hydrating shotcrete , 2008 .

[6]  Wulf Schubert,et al.  Application of new methods of monitoring data analysis for short term prediction in tunnelling , 1997 .

[7]  Lidija Zdravković,et al.  Three-dimensional modelling of NATM tunnelling in decomposed granite soil , 2002 .

[8]  Nick Barton,et al.  Engineering classification of rock masses for the design of tunnel support , 1974 .

[9]  C. Fairhurst,et al.  APPLICATION OF THE CONVERGENCE-CONFINEMENT METHOD OF TUNNEL DESIGN TO ROCK MASSES THAT SATISFY THE HOEK-BROWN FAILURE CRITERION , 2000 .

[10]  Richard J. Finno,et al.  Supported Excavations: Observational Method and Inverse Modeling , 2005 .

[11]  Wulf Schubert,et al.  Entwicklung eines Expertensystems fuer die Interpretation von Verschiebungsmessdaten / Development of an expert system for the interpretation of displacement monitoring data , 2009 .

[12]  Charles Wang Wai Ng,et al.  Three-dimensional ground settlements and stress-transfer mechanisms due to open-face tunnelling , 2005 .

[13]  Stefan Kainrath-Reumayer Dipl.-Ing.,et al.  The convergence confinement method as an aid in the design of deep tunnels. Das Kennlinienverfahren als Hilfsmittel für die Bemessung von tiefliegenden Tunnelbauwerken , 2009 .

[14]  Chungsik YooC. Yoo,et al.  Three-dimensional numerical investigation of multifaced tunneling in water-bearing soft ground , 2008 .

[15]  Marte Gutierrez,et al.  Simplified parameter identification for circular tunnels , 2006 .

[16]  Cuiying Zhou,et al.  Modeling and monitoring in a soft argillaceous shale tunnel , 2009 .

[17]  Samir Maghous,et al.  A numerical approach for design of bolt-supported tunnels regarded as homogenized structures , 2009 .

[18]  Charles Wang Wai Ng,et al.  Three-dimensional numerical investigations of new Austrian tunnelling method (NATM) twin tunnel interactions , 2004 .

[19]  Antonio Bobet,et al.  Load Transfer Mechanisms between Underground Structure and Surrounding Ground: Evaluation of the Failure of the Daikai Station , 2005 .

[20]  Li Xiaojun APPLICATION OF INFRARED PHOTOGRAPHY AND IMAGE PROCESSING TO TUNNEL CONSTRUCTION WITH NEW AUSTRIAN TUNNELING METHOD , 2008 .

[21]  Jorge G. Zornberg,et al.  Numerical Analysis of a Tunnel in Residual Soils , 2002 .

[22]  Roman Lackner,et al.  Ground-shotcrete interaction of NATM tunnels with high overburden , 2005 .

[23]  Herbert A. Mang,et al.  Consistent linearization in Finite Element analysis of coupled chemo-thermal problems with exo- or endothermal reactions , 1999 .

[24]  Patrick de Buhan,et al.  Numerical simulation of bolt‐supported tunnels by means of a multiphase model conceived as an improved homogenization procedure , 2008 .

[25]  F. Pellet,et al.  Contact between a Tunnel Lining and a Damage-Susceptible Viscoplastic Medium , 2009 .

[26]  S. Timoshenko,et al.  THEORY OF PLATES AND SHELLS , 1959 .

[27]  Wulf Schubert,et al.  Critical comments on quantitative rock mass classifications , 1999 .

[28]  Gunter G. Gschwandtner,et al.  The convergence confinement method as an aid in the design of deep tunnels , 2009 .

[29]  Wulf Schubert Prof. Dipl.-Ing. Dr. mont.,et al.  Ductile support design. Zur Auslegung duktiler Ausbauten , 2009 .

[30]  A. Bobet,et al.  Tunnel reinforcement with rockbolts , 2011 .

[31]  David Mašín,et al.  3D Modeling of an NATM Tunnel in High K0 Clay Using Two Different Constitutive Models , 2009 .

[32]  Günter Hofstetter,et al.  A comparison of elastic–plastic soil models for 2D FE analyses of tunnelling , 1998 .

[33]  J. Salençon,et al.  Handbook of Continuum Mechanics: General Concepts Thermoelasticity , 2012 .

[34]  C. Hellmich,et al.  Upscaling quasi-brittle strength of cement-based materials: A continuum micromechanics approach , 2010 .

[35]  Christian Hellmich,et al.  Quantification of stress states in shotcrete shells , 2003 .

[36]  Thao D. Nguyen,et al.  A thermoviscoelastic model for amorphous shape memory polymers: Incorporating structural and stress relaxation , 2008 .

[37]  Stathis C. Stiros,et al.  Deformation and Failure of the Tymfristos Tunnel, Greece , 2004 .

[38]  A. Guenot,et al.  An analytical solution for time-dependent displacements in a circular tunnel , 1987 .

[39]  Stefan Scheiner,et al.  Influence of shotcrete composition on load‐level estimation in NATM‐tunnel shells: Micromechanics‐based sensitivity analyses , 2012 .

[40]  Franz Pacher Ground reaction and lining curves / . Gebirgs‐ und Ausbaukennlinien , 2010 .

[41]  Roman Lackner,et al.  Hybrid analysis method for on-line quantification of stress states in tunnel shells , 2006 .

[42]  Christian Hellmich,et al.  Hybrid method for quantification of stress states in shotcrete tunnel shells: combination of 3D in situ displacement measurements and thermochemoplastic material law , 2001 .

[43]  L V Rabcewicz STABILITY OF TUNNELS UNDER ROCK LOAD PART 3 , 1969 .

[44]  Christian Hellmich,et al.  Upscaling quasi-brittle strength of cement paste and mortar: A multi-scale engineering mechanics model , 2011 .

[45]  Nick Barton,et al.  Back-analysis of Shimizu Tunnel No. 3 by distinct element modeling , 2007 .

[46]  Y. Fung Foundations of solid mechanics , 1965 .

[47]  Christian Hellmich,et al.  Spherical and acicular representation of hydrates in a micromechanical model for cement paste: prediction of early-age elasticity and strength , 2009 .

[48]  Christian Hellmich,et al.  Shotcrete elasticity revisited in the framework of continuum micromechanics : From submicron to meter level , 2005 .

[49]  Stefan Scheiner,et al.  Shell-specific Interpolation of Measured 3D Displacements, for Micromechanics-Based Rapid Safety Assessment of Shotcrete Tunnels , 2010 .

[50]  Christian Hellmich,et al.  Modeling of Early-Age Creep of Shotcrete. I: Model and Model Parameters , 2000 .

[51]  H. Mang,et al.  Computational mechanics of the excavation of tunnels , 1996 .

[52]  Wulf Schubert,et al.  Ductile support design , 2009 .

[53]  Leandro R. Alejano,et al.  Ground reaction curves for tunnels excavated in different quality rock masses showing several types of post-failure behaviour , 2009 .

[54]  Christian Hellmich,et al.  Hybrid method for analysis of segmented shotcrete tunnel linings , 2002 .