A novel approach to fog/low stratus detection using Meteosat 8 data
暂无分享,去创建一个
[1] E. Clothiaux,et al. Cloud Droplet Size Distributions in Low-Level Stratiform Clouds , 2000 .
[3] Sundar A. Christopher,et al. The GOES I–M Imagers: New Tools for Studying Microphysical Properties of Boundary Layer Stratiform Clouds , 2000 .
[4] J. Schmetz,et al. AN INTRODUCTION TO METEOSAT SECOND GENERATION (MSG) , 2002 .
[5] T. Nakajima,et al. Wide-Area Determination of Cloud Microphysical Properties from NOAA AVHRR Measurements for FIRE and ASTEX Regions , 1995 .
[6] S. Jeffrey Underwood,et al. A Multiple-Case Analysis of Nocturnal Radiation-Fog Development in the Central Valley of California Utilizing the GOES Nighttime Fog Product , 2004 .
[7] L. Schüller,et al. Radiative Properties of Boundary Layer Clouds: Droplet Effective Radius versus Number Concentration , 2000 .
[8] S. Warren,et al. A Model for the Spectral Albedo of Snow. I: Pure Snow , 1980 .
[9] G. Hunt. Radiative properties of terrestrial clouds at visible and infra-red thermal window wavelengths , 1973 .
[10] R. Saunders,et al. An improved method for detecting clear sky and cloudy radiances from AVHRR data , 1988 .
[11] W. Menzel,et al. Discriminating clear sky from clouds with MODIS , 1998 .
[12] Teruyuki Nakajima,et al. A Global Determination of Cloud Microphysics with AVHRR Remote Sensing , 2001 .
[13] Jörg Bendix,et al. Satellite based retrieval of cloud properties and their use in rainfall retrievals and fog detection , 2005 .
[14] J. R. Eyre,et al. Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery , 1984 .
[15] D. F. Young,et al. Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE , 1992 .
[16] J. Key,et al. Tools for Atmospheric Radiative Transfer: Streamer and FluxNet. Revised , 1998 .
[17] A. Cracknell. advanced very high resolution radiometer AVHRR , 1997 .
[18] Francesco Tampieri,et al. Size distribution models of fog and cloud droplets in terms of the modified gamma function , 1976 .
[19] Gary P. Ellrod,et al. Advances in the Detection and Analysis of Fog at Night Using GOES Multispectral Infrared Imagery , 1995 .
[20] T. Kleespies. The Retrieval of Marine Stratiform Cloud Properties from Multiple Observations in the 3.9-µm Window under Conditions of Varying Solar Illumination , 1995 .
[21] W. Paul Menzel,et al. Cloud Properties inferred from 812-µm Data , 1994 .
[22] Jörg Bendix,et al. The intercomparison of selected cloud retrieval algorithms , 2005 .
[23] Jörg Bendix,et al. Dynamical Nighttime Fog/Low Stratus Detection Based on Meteosat SEVIRI Data: A Feasibility Study , 2007 .
[24] J. Bendix,et al. Ein operationell einsetzbares Verfahren zur Nebelerkennung auf der Basis von AVHRR-Daten der NOAA-Satelliten , 1991 .
[25] Jörg Bendix,et al. A feasibility study of daytime fog and low stratus detection with TERRA/AQUA-MODIS over land , 2006 .
[26] M. Derrien,et al. MSG/SEVIRI cloud mask and type from SAFNWC , 2005 .
[27] J. Dozier. Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper , 1989 .
[28] Jörg Bendix,et al. A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas , 2002 .
[29] Thomas H. Painter,et al. MULTISPECTRAL AND HYPERSPECTRAL REMOTE SENSING OF ALPINE SNOW PROPERTIES , 2004 .
[30] D. Aminou. MSG's SEVIRI instrument , 2002 .
[31] D. A. Stewart,et al. A Survey of Fog and Related Optical Propagation Characteristics (Paper 2R0462) , 1982 .
[32] C. Marzban. The ROC Curve and the Area under It as Performance Measures , 2004 .
[33] F. Joseph Turk,et al. Stratus and Fog Products Using GOES-8–9 3.9-μm Data , 1997 .
[34] M. Wetzel,et al. Satellite microphysical retrievals for land-based fog with validation by balloon profiling , 1996 .
[35] M. H. Smith,et al. A field study of radiation fog in meppen, West Germany , 1981 .