A novel approach to fog/low stratus detection using Meteosat 8 data

A method is presented for fog and low stratus detection from daytime satellite imagery based on Meteosat 8 SEVIRI (Spinning-Enhanced Visible and Infra-Red Imager) data. With its excellent spatial, spectral and temporal resolutions, this imagery is an ideal basis for operational fog monitoring. The scheme utilizes a range of pixel-based and novel object-oriented techniques to separate fog and low stratus clouds from other cloud types. Fog and low stratus are identified by a number of tests which explicitly and implicitly address fog/low stratus spectral, spatial and microphysical properties. The scheme's performance is evaluated using ground-based measurements of cloud height over Europe. The algorithm is found to detect low clouds very accurately, with probabilities of detection (POD) ranging from 0.632 to 0.834 (for different inter-comparison approaches), and false alarm ratios (FAR) between 0.059 and 0.021. The retrieval of sub-pixel and temporal effects remain issues for further investigation.

[1]  E. Clothiaux,et al.  Cloud Droplet Size Distributions in Low-Level Stratiform Clouds , 2000 .

[2]  Radiative effect of cirrus clouds in Meteosat Second Generation Spinning Enhanced Visible and Infrared Imager channels , 1998 .

[3]  Sundar A. Christopher,et al.  The GOES I–M Imagers: New Tools for Studying Microphysical Properties of Boundary Layer Stratiform Clouds , 2000 .

[4]  J. Schmetz,et al.  AN INTRODUCTION TO METEOSAT SECOND GENERATION (MSG) , 2002 .

[5]  T. Nakajima,et al.  Wide-Area Determination of Cloud Microphysical Properties from NOAA AVHRR Measurements for FIRE and ASTEX Regions , 1995 .

[6]  S. Jeffrey Underwood,et al.  A Multiple-Case Analysis of Nocturnal Radiation-Fog Development in the Central Valley of California Utilizing the GOES Nighttime Fog Product , 2004 .

[7]  L. Schüller,et al.  Radiative Properties of Boundary Layer Clouds: Droplet Effective Radius versus Number Concentration , 2000 .

[8]  S. Warren,et al.  A Model for the Spectral Albedo of Snow. I: Pure Snow , 1980 .

[9]  G. Hunt Radiative properties of terrestrial clouds at visible and infra-red thermal window wavelengths , 1973 .

[10]  R. Saunders,et al.  An improved method for detecting clear sky and cloudy radiances from AVHRR data , 1988 .

[11]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[12]  Teruyuki Nakajima,et al.  A Global Determination of Cloud Microphysics with AVHRR Remote Sensing , 2001 .

[13]  Jörg Bendix,et al.  Satellite based retrieval of cloud properties and their use in rainfall retrievals and fog detection , 2005 .

[14]  J. R. Eyre,et al.  Detection of fog at night using Advanced Very High Resolution Radiometer (AVHRR) imagery , 1984 .

[15]  D. F. Young,et al.  Stratocumulus cloud properties derived from simultaneous satellite and island-based instrumentation during FIRE , 1992 .

[16]  J. Key,et al.  Tools for Atmospheric Radiative Transfer: Streamer and FluxNet. Revised , 1998 .

[17]  A. Cracknell advanced very high resolution radiometer AVHRR , 1997 .

[18]  Francesco Tampieri,et al.  Size distribution models of fog and cloud droplets in terms of the modified gamma function , 1976 .

[19]  Gary P. Ellrod,et al.  Advances in the Detection and Analysis of Fog at Night Using GOES Multispectral Infrared Imagery , 1995 .

[20]  T. Kleespies The Retrieval of Marine Stratiform Cloud Properties from Multiple Observations in the 3.9-µm Window under Conditions of Varying Solar Illumination , 1995 .

[21]  W. Paul Menzel,et al.  Cloud Properties inferred from 812-µm Data , 1994 .

[22]  Jörg Bendix,et al.  The intercomparison of selected cloud retrieval algorithms , 2005 .

[23]  Jörg Bendix,et al.  Dynamical Nighttime Fog/Low Stratus Detection Based on Meteosat SEVIRI Data: A Feasibility Study , 2007 .

[24]  J. Bendix,et al.  Ein operationell einsetzbares Verfahren zur Nebelerkennung auf der Basis von AVHRR-Daten der NOAA-Satelliten , 1991 .

[25]  Jörg Bendix,et al.  A feasibility study of daytime fog and low stratus detection with TERRA/AQUA-MODIS over land , 2006 .

[26]  M. Derrien,et al.  MSG/SEVIRI cloud mask and type from SAFNWC , 2005 .

[27]  J. Dozier Spectral Signature of Alpine Snow Cover from the Landsat Thematic Mapper , 1989 .

[28]  Jörg Bendix,et al.  A satellite-based climatology of fog and low-level stratus in Germany and adjacent areas , 2002 .

[29]  Thomas H. Painter,et al.  MULTISPECTRAL AND HYPERSPECTRAL REMOTE SENSING OF ALPINE SNOW PROPERTIES , 2004 .

[30]  D. Aminou MSG's SEVIRI instrument , 2002 .

[31]  D. A. Stewart,et al.  A Survey of Fog and Related Optical Propagation Characteristics (Paper 2R0462) , 1982 .

[32]  C. Marzban The ROC Curve and the Area under It as Performance Measures , 2004 .

[33]  F. Joseph Turk,et al.  Stratus and Fog Products Using GOES-8–9 3.9-μm Data , 1997 .

[34]  M. Wetzel,et al.  Satellite microphysical retrievals for land-based fog with validation by balloon profiling , 1996 .

[35]  M. H. Smith,et al.  A field study of radiation fog in meppen, West Germany , 1981 .