Scattered Data Fitting on the Sphere Mathematical Methods for Curves and Surfaces Ii 117
暂无分享,去创建一个
[1] G. Faber. Über stetige Funktionen , 1908 .
[2] Dr. M. G. Worster. Methods of Mathematical Physics , 1947, Nature.
[3] E. Hobson. The Theory of Spherical and Ellipsoidal Harmonics , 1955 .
[4] Michael Golomb,et al. OPTIMAL APPROXIMATIONS AND ERROR BOUNDS , 1958 .
[5] D. Newman,et al. Jackson’s Theorem in Higher Dimensions , 1964 .
[6] W. M. Kaula,et al. A spherical harmonic analysis of the Earth's topography , 1967 .
[7] Hubert Berens,et al. Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten , 1968 .
[8] N. S. Barnett,et al. Private communication , 1969 .
[9] David L. Ragozin,et al. Constructive polynomial approximation on spheres and projective spaces. , 1971 .
[10] D. Ragozin,et al. Uniform convergence of spherical harmonic expansions , 1971 .
[11] W. J. Gordon,et al. Smooth interpolation in triangles , 1973 .
[12] R. L. Hardy,et al. Least squares prediction of gravity anomalies, geoidal undulations, and deflections of the vertical with multiquadric harmonic functions , 1975 .
[13] Jean Duchon,et al. Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .
[14] K. Chung,et al. On Lattices Admitting Unique Lagrange Interpolations , 1977 .
[15] P. Swarztrauber. On the Spectral Approximation of Discrete Scalar and Vector Functions on the Sphere , 1979 .
[16] G. Nielson. The side-vertex method for interpolation in triangles☆ , 1979 .
[17] R. Sibson,et al. A brief description of natural neighbor interpolation , 1981 .
[18] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[19] G. Wahba. Spline Interpolation and Smoothing on the Sphere , 1981 .
[20] W. Freeden,et al. On spherical spline interpolation and approximation , 1981 .
[21] Paul N. Swarztrauber,et al. The Approximation of Vector Functions and Their Derivatives on the Sphere , 1981 .
[22] Grace Wahba,et al. Vector Splines on the Sphere, with Application to the Estimation of Vorticity and Divergence from Discrete, Noisy Data , 1982 .
[23] R. Franke. Smooth Interpolation of Scattered Data by Local Thin Plate Splines , 1982 .
[24] R. Franke. Scattered data interpolation: tests of some methods , 1982 .
[25] G. Wahba. Erratum: Spline Interpolation and Smoothing on the Sphere , 1982 .
[26] Willi Freeden,et al. Spline methods in geodetic approximation problems , 1982 .
[27] W. Freeden,et al. Remainder Terms in Numerical Integration Formulas of the Sphere , 1982 .
[28] C. Micchelli,et al. Recent Progress in multivariate splines , 1983 .
[29] П. И. ЛИЗОРКИН,et al. A theorem concerning approximation on the sphere , 1983 .
[30] R. Franke. Scattered data interpolation using thin plate splines with tension , 1984 .
[31] S. L. Lee,et al. Interpolatory and variation-diminishing properties of generalized B-splines , 1984, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[32] Willi Freeden,et al. Spherical spline interpolation—basic theory and computational aspects , 1984 .
[33] Robert J. Renka,et al. Interpolation of data on the surface of a sphere , 1984, TOMS.
[34] S.Leif Svensson,et al. Finite elements on the sphere , 1984 .
[35] Robert J. Renka,et al. Algorithm 623: Interpolation on the Surface of a Sphere , 1984, TOMS.
[36] Charles L. Lawson,et al. $C^1$ surface interpolation for scattered data on a sphere , 1984 .
[37] G. Wahba. Surface fitting with scattered noisy data on Euclidean D-space and on the sphere , 1984 .
[38] Spherical quadrature and inversion of Radon transforms , 1985 .
[39] P. Dierckx. The Spectral Approximation of Bicubic Splines on the Sphere , 1986 .
[40] S. Rippa,et al. Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions , 1986 .
[41] C. Micchelli. Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .
[42] Rolland L. Hardy,et al. A multiquadric-biharmonic representation and approximation of disturbing potential , 1986 .
[43] W. Freeden. A spline interpolation method for solving boundary value problems of potential theory from discretely given data , 1987 .
[44] Gregory M. Nielson,et al. Interpolation over a sphere based upon a minimum norm network , 1987, Comput. Aided Geom. Des..
[45] Nira Dyn,et al. Interpolation of scattered Data by radial Functions , 1987, Topics in Multivariate Approximation.
[46] P. R. Pfluger,et al. B-Spline Approximation of a Closed Surface , 1987 .
[47] Manfred Reimer,et al. Interpolation on the sphere and bounds for the Lagrangian square sums , 1987 .
[48] S. M. Nikol'skii,et al. APPROXIMATION OF FUNCTIONS ON THE SPHERE , 1988 .
[49] S. L. Lee,et al. Interpolation on the Simplex by Homogeneous Polynomials , 1988 .
[50] Kevin G. Suffern. Perspective views of polar coordinate functions , 1988, Comput. Graph..
[51] W. Madych,et al. Multivariate interpolation and condi-tionally positive definite functions , 1988 .
[52] A. Méhauté,et al. A knot removal strategy for scattered data in R 2 , 1989 .
[53] F. Perrin,et al. Spherical splines for scalp potential and current density mapping. , 1989, Electroencephalography and clinical neurophysiology.
[54] S. M. Nikol'skii,et al. Approximation on the sphere-a survey , 1989 .
[55] Javier Sánchez-Reyes. Single-valued curves in polar coordinates , 1990, Comput. Aided Des..
[56] Gregory M. Nielson,et al. Visualizing functions over a sphere , 1990, IEEE Computer Graphics and Applications.
[57] Hans Hagen,et al. Interpolation of scattered data on closed surfaces , 1990, Comput. Aided Geom. Des..
[58] Nira Dyn,et al. Algorithms for the construction of data dependent triangulations , 1990 .
[59] Nira Dyn,et al. Interpolation by sums of radial functions , 1990 .
[60] S. L. Lee. The use of Homogeneous Coordinates in Spline Functions and Polynomial Interpolation , 1990 .
[61] Larry L. Schumaker,et al. Cubic spline fitting using data dependent triangulations , 1990, Comput. Aided Geom. Des..
[62] S. Rippa,et al. Data Dependent Triangulations for Piecewise Linear Interpolation , 1990 .
[63] Helmut Pottmann,et al. Modified multiquadric methods for scattered data interpolation over a sphere , 1990, Comput. Aided Geom. Des..
[64] J. Mason,et al. Uniform piecewise approximation on the sphere , 1990 .
[65] L. Schumaker,et al. Fitting scattered data on spherelike surfaces using tensor products of trigonometric and polynomial splines , 1991 .
[66] Gregory M. Nielson,et al. Scattered Data Interpolation and Applications: A Tutorial and Survey , 1991 .
[67] Helmut Pottmann,et al. Visualizing functions on a surface , 1991, Comput. Animat. Virtual Worlds.
[68] S. L. Lee,et al. Construction of lattices for lagrange interpolation in projective space , 1991 .
[69] Pierre Montés,et al. Local Kriging Interpolation: Application to Scattered Data on the Sphere , 1991, Curves and Surfaces.
[70] George M. Ruhlmann,et al. Local search: A new hidden line elimination algorithm to display spherical coordinate equations , 1991, Comput. Graph..
[71] R. Barnhill,et al. Methods for Constructing Surfaces on Surfaces , 1991 .
[72] On the best approximation of functions on the sphere in the metric ofLp(Sn), 1 , 1991 .
[73] V. A. Menegatto,et al. INTERPOLATION ON SPHERICAL DOMAINS , 1992 .
[74] Will Light,et al. Interpolation by periodic radial basis functions , 1992 .
[75] T. A. Foley. The map and blend scattered data interpolant on a sphere , 1992 .
[76] J. L. Brown,et al. Problems with defining barycentric coordinates for the sphere , 1992 .
[77] Helmut Pottmann,et al. Fat surfaces: a trivariate approach to triangle-based interpolation on surfaces , 1992, Comput. Aided Geom. Des..
[78] Helmut Pottmann,et al. Interpolation on surfaces using minimum norm networks , 1992, Comput. Aided Geom. Des..
[79] Richard Franke,et al. Knot Selection for Least Squares Thin Plate Splines , 1992, SIAM J. Sci. Comput..
[80] M. Buhmann. New Developments in the Theory of Radial Basis Function Interpolation , 1993 .
[81] Hans Hagen,et al. Repeated Knots in Least Squares Multiquadric Functions , 1993, Geometric Modelling.
[82] J. Ward,et al. On the least squares fit by radial functions to multidimensional scattered data , 1993 .
[83] Radial basis function approximation : from gridded centers to scattered centers , 1993 .
[84] Larry L. Schumaker,et al. Computing optimal triangulations using simulated annealing , 1993, Comput. Aided Geom. Des..
[85] Valdir A. Menegatto,et al. Strictly positive definite kernels on the Hilbert sphere , 1994 .
[86] Helmut Pottmann,et al. Computing shortest paths on polyhedra: applications in geometric modeling and scientific visualization , 1994, Int. J. Comput. Geom. Appl..
[87] L. Schumaker,et al. Curves and surfaces in geometric design , 1994 .
[88] Hans Hagen,et al. Least squares surface approximation to scattered data using multiquadratic functions , 1994, Adv. Comput. Math..
[89] J. L. Brown,et al. Natural neighbor interpolation on the sphere , 1994 .
[90] Javier Sánchez-Reyes. Single-valued surfaces in spherical coordinates , 1994, Comput. Aided Geom. Des..
[91] Helmut Pottmann,et al. Curvature analysis and visualization for functions defined on Euclidean spaces or surfaces , 1994, Comput. Aided Geom. Des..
[92] R. Franke,et al. A Survey on Spherical Spline Approximation , 1995 .
[93] Tom Lyche,et al. Control curves and knot insertion for trigonometric splines , 1995, Adv. Comput. Math..
[94] A. B. Pevnyi. Spherical splines and interpolation on a sphere , 1995 .
[95] Robert Schaback,et al. Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..
[96] Eberhard Schmitt. Wavelets and multiresolution analysis on sphere-like surfaces , 1995, Optics + Photonics.
[97] R. Schaback. Creating Surfaces from Scattered Data Using Radial Basis Functions , 1995 .
[98] W. Dahmen,et al. Multiresolution analysis and wavelets on S2 and S3 , 1995 .
[99] F. J. Narcowich,et al. Generalized Hermite interpolation and positive definite kernels on a Riemannian manifold , 1995 .
[100] Hans-Peter Seidel,et al. Spherical Triangular B‐splines with Application to Data Fitting , 1995, Comput. Graph. Forum.
[101] Peter Schröder,et al. Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.
[102] W. Light,et al. Variational Theory for Interpolation on SpheresJeremy Levesley , , 1996 .
[103] Larry L. Schumaker,et al. Fitting scattered data on sphere-like surfaces using spherical splines , 1996 .
[104] Larry L. Schumaker,et al. Hybrid Be´zier patches on sphere-like surfaces , 1996 .
[105] Larry L. Schumaker,et al. Bernstein-Bézier polynomials on spheres and sphere-like surfaces , 1996, Comput. Aided Geom. Des..
[106] M. Floater,et al. Multistep scattered data interpolation using compactly supported radial basis functions , 1996 .
[107] F. J. Narcowich,et al. Nonstationary Wavelets on them-Sphere for Scattered Data , 1996 .
[108] Larry L. Schumaker,et al. Dimension and local bases of homogeneous spline spaces , 1996 .
[109] Xingping Sun,et al. Strictly positive definite functions on spheres in Euclidean spaces , 1996, Math. Comput..
[110] Marian Neamtu,et al. Homogeneous simplex splines , 1996 .
[111] Xingping Sun,et al. Fundamental sets of continuous functions on spheres , 1997 .
[112] M. Schreiner. On a new condition for strictly positive definite functions on spheres , 1997 .
[113] Franz-Erich Wolter,et al. Geodesic Voronoi diagrams on parametric surfaces , 1997, Proceedings Computer Graphics International.
[114] M. Schreiner. Locally Supported Kernels for Spherical Spline Interpolation , 1997 .
[115] N. Sivakumar,et al. Stability results for scattered‐data interpolation on Euclidean spheres , 1998, Adv. Comput. Math..
[116] Tom Lyche,et al. Quasi-interpolants Based on Trigonometric Splines , 1998 .
[117] Gregory E. Fasshauer,et al. Multistep approximation algorithms: Improved convergence rates through postconditioning with smoothing kernels , 1999, Adv. Comput. Math..
[118] Kurt Jetter,et al. Error estimates for scattered data interpolation on spheres , 1999, Math. Comput..
[119] F. J. Narcowich,et al. Variational Principles and Sobolev-Type Estimates for Generalized Interpolation on a Riemannian Manifold , 1999 .
[120] Gregory E. Fasshauer,et al. Hermite interpolation with radial basis functions on spheres , 1999, Adv. Comput. Math..
[121] M. Golitschek,et al. Interpolation by Polynomials and Radial Basis Functions on Spheres , 2000 .
[122] Tom Lyche,et al. A Multiresolution Tensor Spline Method for Fitting Functions on the Sphere , 2000, SIAM J. Sci. Comput..