Scattered Data Fitting on the Sphere Mathematical Methods for Curves and Surfaces Ii 117

We discuss several approaches to the problem of interpolating or approximating data given at scattered points lying on the surface of the sphere. These include methods based on spherical harmonics, tensor-product spaces on a rectangular map of the sphere, functions deened over spherical triangulations, spherical splines, spherical radial basis functions, and some associated multi-resolution methods. In addition, we brieey discuss sphere-like surfaces, visualization, and methods for more general surfaces. The paper includes a total of 206 references. x1. Introduction Let S be the unit sphere in IR 3 , and suppose that fv i g n i=1 is a set of scattered points lying on S. In this paper we are interested in the following problem: Problem 1. Given real numbers fr i g n i=1 , nd a (smooth) function s deened on S which interpolates the data in the sense that or approximates it in the sense that Data tting problems where the underlying domain is the sphere arise in many areas, including e.g. geophysics and meteorology where the sphere is taken as a model of the earth. The question of whether interpolation or approximation should be carried out depends on the setting, although in practice measured data are almost always noisy, in which case approximation is probably more appropriate. In most applications, we will want s to be at least continuous. In some cases we may want it to be C 1 so that the associated surface F := fs(v)v : v 2 Sg is tangent plane continuous. All rights of reproduction in any form reserved.

[1]  G. Faber Über stetige Funktionen , 1908 .

[2]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[3]  E. Hobson The Theory of Spherical and Ellipsoidal Harmonics , 1955 .

[4]  Michael Golomb,et al.  OPTIMAL APPROXIMATIONS AND ERROR BOUNDS , 1958 .

[5]  D. Newman,et al.  Jackson’s Theorem in Higher Dimensions , 1964 .

[6]  W. M. Kaula,et al.  A spherical harmonic analysis of the Earth's topography , 1967 .

[7]  Hubert Berens,et al.  Limitierungsverfahren von Reihen mehrdimensionaler Kugelfunktionen und deren Saturationsverhalten , 1968 .

[8]  N. S. Barnett,et al.  Private communication , 1969 .

[9]  David L. Ragozin,et al.  Constructive polynomial approximation on spheres and projective spaces. , 1971 .

[10]  D. Ragozin,et al.  Uniform convergence of spherical harmonic expansions , 1971 .

[11]  W. J. Gordon,et al.  Smooth interpolation in triangles , 1973 .

[12]  R. L. Hardy,et al.  Least squares prediction of gravity anomalies, geoidal undulations, and deflections of the vertical with multiquadric harmonic functions , 1975 .

[13]  Jean Duchon,et al.  Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .

[14]  K. Chung,et al.  On Lattices Admitting Unique Lagrange Interpolations , 1977 .

[15]  P. Swarztrauber On the Spectral Approximation of Discrete Scalar and Vector Functions on the Sphere , 1979 .

[16]  G. Nielson The side-vertex method for interpolation in triangles☆ , 1979 .

[17]  R. Sibson,et al.  A brief description of natural neighbor interpolation , 1981 .

[18]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[19]  G. Wahba Spline Interpolation and Smoothing on the Sphere , 1981 .

[20]  W. Freeden,et al.  On spherical spline interpolation and approximation , 1981 .

[21]  Paul N. Swarztrauber,et al.  The Approximation of Vector Functions and Their Derivatives on the Sphere , 1981 .

[22]  Grace Wahba,et al.  Vector Splines on the Sphere, with Application to the Estimation of Vorticity and Divergence from Discrete, Noisy Data , 1982 .

[23]  R. Franke Smooth Interpolation of Scattered Data by Local Thin Plate Splines , 1982 .

[24]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[25]  G. Wahba Erratum: Spline Interpolation and Smoothing on the Sphere , 1982 .

[26]  Willi Freeden,et al.  Spline methods in geodetic approximation problems , 1982 .

[27]  W. Freeden,et al.  Remainder Terms in Numerical Integration Formulas of the Sphere , 1982 .

[28]  C. Micchelli,et al.  Recent Progress in multivariate splines , 1983 .

[29]  П. И. ЛИЗОРКИН,et al.  A theorem concerning approximation on the sphere , 1983 .

[30]  R. Franke Scattered data interpolation using thin plate splines with tension , 1984 .

[31]  S. L. Lee,et al.  Interpolatory and variation-diminishing properties of generalized B-splines , 1984, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[32]  Willi Freeden,et al.  Spherical spline interpolation—basic theory and computational aspects , 1984 .

[33]  Robert J. Renka,et al.  Interpolation of data on the surface of a sphere , 1984, TOMS.

[34]  S.Leif Svensson,et al.  Finite elements on the sphere , 1984 .

[35]  Robert J. Renka,et al.  Algorithm 623: Interpolation on the Surface of a Sphere , 1984, TOMS.

[36]  Charles L. Lawson,et al.  $C^1$ surface interpolation for scattered data on a sphere , 1984 .

[37]  G. Wahba Surface fitting with scattered noisy data on Euclidean D-space and on the sphere , 1984 .

[38]  Spherical quadrature and inversion of Radon transforms , 1985 .

[39]  P. Dierckx The Spectral Approximation of Bicubic Splines on the Sphere , 1986 .

[40]  S. Rippa,et al.  Numerical Procedures for Surface Fitting of Scattered Data by Radial Functions , 1986 .

[41]  C. Micchelli Interpolation of scattered data: Distance matrices and conditionally positive definite functions , 1986 .

[42]  Rolland L. Hardy,et al.  A multiquadric-biharmonic representation and approximation of disturbing potential , 1986 .

[43]  W. Freeden A spline interpolation method for solving boundary value problems of potential theory from discretely given data , 1987 .

[44]  Gregory M. Nielson,et al.  Interpolation over a sphere based upon a minimum norm network , 1987, Comput. Aided Geom. Des..

[45]  Nira Dyn,et al.  Interpolation of scattered Data by radial Functions , 1987, Topics in Multivariate Approximation.

[46]  P. R. Pfluger,et al.  B-Spline Approximation of a Closed Surface , 1987 .

[47]  Manfred Reimer,et al.  Interpolation on the sphere and bounds for the Lagrangian square sums , 1987 .

[48]  S. M. Nikol'skii,et al.  APPROXIMATION OF FUNCTIONS ON THE SPHERE , 1988 .

[49]  S. L. Lee,et al.  Interpolation on the Simplex by Homogeneous Polynomials , 1988 .

[50]  Kevin G. Suffern Perspective views of polar coordinate functions , 1988, Comput. Graph..

[51]  W. Madych,et al.  Multivariate interpolation and condi-tionally positive definite functions , 1988 .

[52]  A. Méhauté,et al.  A knot removal strategy for scattered data in R 2 , 1989 .

[53]  F. Perrin,et al.  Spherical splines for scalp potential and current density mapping. , 1989, Electroencephalography and clinical neurophysiology.

[54]  S. M. Nikol'skii,et al.  Approximation on the sphere-a survey , 1989 .

[55]  Javier Sánchez-Reyes Single-valued curves in polar coordinates , 1990, Comput. Aided Des..

[56]  Gregory M. Nielson,et al.  Visualizing functions over a sphere , 1990, IEEE Computer Graphics and Applications.

[57]  Hans Hagen,et al.  Interpolation of scattered data on closed surfaces , 1990, Comput. Aided Geom. Des..

[58]  Nira Dyn,et al.  Algorithms for the construction of data dependent triangulations , 1990 .

[59]  Nira Dyn,et al.  Interpolation by sums of radial functions , 1990 .

[60]  S. L. Lee The use of Homogeneous Coordinates in Spline Functions and Polynomial Interpolation , 1990 .

[61]  Larry L. Schumaker,et al.  Cubic spline fitting using data dependent triangulations , 1990, Comput. Aided Geom. Des..

[62]  S. Rippa,et al.  Data Dependent Triangulations for Piecewise Linear Interpolation , 1990 .

[63]  Helmut Pottmann,et al.  Modified multiquadric methods for scattered data interpolation over a sphere , 1990, Comput. Aided Geom. Des..

[64]  J. Mason,et al.  Uniform piecewise approximation on the sphere , 1990 .

[65]  L. Schumaker,et al.  Fitting scattered data on spherelike surfaces using tensor products of trigonometric and polynomial splines , 1991 .

[66]  Gregory M. Nielson,et al.  Scattered Data Interpolation and Applications: A Tutorial and Survey , 1991 .

[67]  Helmut Pottmann,et al.  Visualizing functions on a surface , 1991, Comput. Animat. Virtual Worlds.

[68]  S. L. Lee,et al.  Construction of lattices for lagrange interpolation in projective space , 1991 .

[69]  Pierre Montés,et al.  Local Kriging Interpolation: Application to Scattered Data on the Sphere , 1991, Curves and Surfaces.

[70]  George M. Ruhlmann,et al.  Local search: A new hidden line elimination algorithm to display spherical coordinate equations , 1991, Comput. Graph..

[71]  R. Barnhill,et al.  Methods for Constructing Surfaces on Surfaces , 1991 .

[72]  On the best approximation of functions on the sphere in the metric ofLp(Sn), 1 , 1991 .

[73]  V. A. Menegatto,et al.  INTERPOLATION ON SPHERICAL DOMAINS , 1992 .

[74]  Will Light,et al.  Interpolation by periodic radial basis functions , 1992 .

[75]  T. A. Foley The map and blend scattered data interpolant on a sphere , 1992 .

[76]  J. L. Brown,et al.  Problems with defining barycentric coordinates for the sphere , 1992 .

[77]  Helmut Pottmann,et al.  Fat surfaces: a trivariate approach to triangle-based interpolation on surfaces , 1992, Comput. Aided Geom. Des..

[78]  Helmut Pottmann,et al.  Interpolation on surfaces using minimum norm networks , 1992, Comput. Aided Geom. Des..

[79]  Richard Franke,et al.  Knot Selection for Least Squares Thin Plate Splines , 1992, SIAM J. Sci. Comput..

[80]  M. Buhmann New Developments in the Theory of Radial Basis Function Interpolation , 1993 .

[81]  Hans Hagen,et al.  Repeated Knots in Least Squares Multiquadric Functions , 1993, Geometric Modelling.

[82]  J. Ward,et al.  On the least squares fit by radial functions to multidimensional scattered data , 1993 .

[83]  Radial basis function approximation : from gridded centers to scattered centers , 1993 .

[84]  Larry L. Schumaker,et al.  Computing optimal triangulations using simulated annealing , 1993, Comput. Aided Geom. Des..

[85]  Valdir A. Menegatto,et al.  Strictly positive definite kernels on the Hilbert sphere , 1994 .

[86]  Helmut Pottmann,et al.  Computing shortest paths on polyhedra: applications in geometric modeling and scientific visualization , 1994, Int. J. Comput. Geom. Appl..

[87]  L. Schumaker,et al.  Curves and surfaces in geometric design , 1994 .

[88]  Hans Hagen,et al.  Least squares surface approximation to scattered data using multiquadratic functions , 1994, Adv. Comput. Math..

[89]  J. L. Brown,et al.  Natural neighbor interpolation on the sphere , 1994 .

[90]  Javier Sánchez-Reyes Single-valued surfaces in spherical coordinates , 1994, Comput. Aided Geom. Des..

[91]  Helmut Pottmann,et al.  Curvature analysis and visualization for functions defined on Euclidean spaces or surfaces , 1994, Comput. Aided Geom. Des..

[92]  R. Franke,et al.  A Survey on Spherical Spline Approximation , 1995 .

[93]  Tom Lyche,et al.  Control curves and knot insertion for trigonometric splines , 1995, Adv. Comput. Math..

[94]  A. B. Pevnyi Spherical splines and interpolation on a sphere , 1995 .

[95]  Robert Schaback,et al.  Error estimates and condition numbers for radial basis function interpolation , 1995, Adv. Comput. Math..

[96]  Eberhard Schmitt Wavelets and multiresolution analysis on sphere-like surfaces , 1995, Optics + Photonics.

[97]  R. Schaback Creating Surfaces from Scattered Data Using Radial Basis Functions , 1995 .

[98]  W. Dahmen,et al.  Multiresolution analysis and wavelets on S2 and S3 , 1995 .

[99]  F. J. Narcowich,et al.  Generalized Hermite interpolation and positive definite kernels on a Riemannian manifold , 1995 .

[100]  Hans-Peter Seidel,et al.  Spherical Triangular B‐splines with Application to Data Fitting , 1995, Comput. Graph. Forum.

[101]  Peter Schröder,et al.  Spherical wavelets: efficiently representing functions on the sphere , 1995, SIGGRAPH.

[102]  W. Light,et al.  Variational Theory for Interpolation on SpheresJeremy Levesley , , 1996 .

[103]  Larry L. Schumaker,et al.  Fitting scattered data on sphere-like surfaces using spherical splines , 1996 .

[104]  Larry L. Schumaker,et al.  Hybrid Be´zier patches on sphere-like surfaces , 1996 .

[105]  Larry L. Schumaker,et al.  Bernstein-Bézier polynomials on spheres and sphere-like surfaces , 1996, Comput. Aided Geom. Des..

[106]  M. Floater,et al.  Multistep scattered data interpolation using compactly supported radial basis functions , 1996 .

[107]  F. J. Narcowich,et al.  Nonstationary Wavelets on them-Sphere for Scattered Data , 1996 .

[108]  Larry L. Schumaker,et al.  Dimension and local bases of homogeneous spline spaces , 1996 .

[109]  Xingping Sun,et al.  Strictly positive definite functions on spheres in Euclidean spaces , 1996, Math. Comput..

[110]  Marian Neamtu,et al.  Homogeneous simplex splines , 1996 .

[111]  Xingping Sun,et al.  Fundamental sets of continuous functions on spheres , 1997 .

[112]  M. Schreiner On a new condition for strictly positive definite functions on spheres , 1997 .

[113]  Franz-Erich Wolter,et al.  Geodesic Voronoi diagrams on parametric surfaces , 1997, Proceedings Computer Graphics International.

[114]  M. Schreiner Locally Supported Kernels for Spherical Spline Interpolation , 1997 .

[115]  N. Sivakumar,et al.  Stability results for scattered‐data interpolation on Euclidean spheres , 1998, Adv. Comput. Math..

[116]  Tom Lyche,et al.  Quasi-interpolants Based on Trigonometric Splines , 1998 .

[117]  Gregory E. Fasshauer,et al.  Multistep approximation algorithms: Improved convergence rates through postconditioning with smoothing kernels , 1999, Adv. Comput. Math..

[118]  Kurt Jetter,et al.  Error estimates for scattered data interpolation on spheres , 1999, Math. Comput..

[119]  F. J. Narcowich,et al.  Variational Principles and Sobolev-Type Estimates for Generalized Interpolation on a Riemannian Manifold , 1999 .

[120]  Gregory E. Fasshauer,et al.  Hermite interpolation with radial basis functions on spheres , 1999, Adv. Comput. Math..

[121]  M. Golitschek,et al.  Interpolation by Polynomials and Radial Basis Functions on Spheres , 2000 .

[122]  Tom Lyche,et al.  A Multiresolution Tensor Spline Method for Fitting Functions on the Sphere , 2000, SIAM J. Sci. Comput..