Fully graphical treatment of the quantum algorithm for the Hidden Subgroup Problem
暂无分享,去创建一个
[1] Bob Coecke,et al. Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.
[2] R. Spekkens. Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.
[3] B. Coecke. Quantum picturalism , 2009, 0908.1787.
[4] B. Coecke,et al. Spekkens's toy theory as a category of processes , 2011, 1108.1978.
[5] 今井 浩. 20世紀の名著名論:Peter Shor : Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 2004 .
[6] Bill Edwards,et al. Phase Groups and the Origin of Non-locality for Qubits , 2010, QPL@MFPS.
[7] Frobenius,et al. Ueber Gruppen von vertauschbaren Elementen. , 1879 .
[8] Jamie Vicary. Topological Structure of Quantum Algorithms , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.
[9] B. Coecke,et al. Classical and quantum structuralism , 2009, 0904.1997.
[10] William Zeng,et al. Models of Quantum Algorithms in Sets and Relations , 2015, ArXiv.
[11] Damian Markham,et al. Quantum protocols within Spekkens' toy model , 2016, 1608.09012.
[12] Oded Regev. Quantum Computation and Lattice Problems , 2004, SIAM J. Comput..
[13] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[14] Umesh V. Vazirani,et al. Quantum Complexity Theory , 1997, SIAM J. Comput..
[15] Dusko Pavlovic,et al. A new description of orthogonal bases , 2008, Mathematical Structures in Computer Science.
[16] Giacomo Mauro D'Ariano,et al. The Feynman problem and Fermionic entanglement: Fermionic theory versus qubit theory , 2014, 1403.2674.
[18] Miriam Backens,et al. A Complete Graphical Calculus for Spekkens’ Toy Bit Theory , 2014, 1411.1618.
[19] Ross Duncan,et al. Interacting Frobenius Algebras are Hopf , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[20] Richard Jozsa,et al. Quantum factoring, discrete logarithms, and the hidden subgroup problem , 1996, Comput. Sci. Eng..
[21] R. Jozsa,et al. Quantum Computation and Shor's Factoring Algorithm , 1996 .
[22] Stefano Gogioso,et al. Infinite-dimensional Categorical Quantum Mechanics , 2016, QPL.
[23] Alexander Russell,et al. The Symmetric Group Defies Strong Fourier Sampling , 2008, SIAM J. Comput..
[24] Ross Street,et al. Traced monoidal categories , 1996 .
[25] A. Joyal,et al. The geometry of tensor calculus, I , 1991 .
[26] Daniel R. Simon,et al. On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.
[27] P. Selinger. A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.
[28] Journal für die reine und angewandte Mathematik , 1893 .
[29] V. Buchstaber,et al. Mathematical Proceedings of the Cambridge Philosophical Society , 1979 .
[30] Alexander Russell,et al. Normal subgroup reconstruction and quantum computation using group representations , 2000, STOC '00.
[31] J. Vicary. Categorical Formulation of Finite-Dimensional Quantum Algebras , 2008, 0805.0432.
[32] Lorenzo Catani,et al. Spekkens’ toy model in all dimensions and its relationship with stabiliser quantum mechanics , 2017, 1701.07801.
[33] R. Jozsa. Quantum algorithms and the Fourier transform , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[34] Aleks Kissinger,et al. Pictures of processes : automated graph rewriting for monoidal categories and applications to quantum computing , 2012, ArXiv.
[35] Martin Rötteler,et al. Limitations of quantum coset states for graph isomorphism , 2006, STOC '06.