Fully graphical treatment of the quantum algorithm for the Hidden Subgroup Problem

The abelian Hidden Subgroup Problem (HSP) is extremely general, and many problems with known quantum exponential speed-up (such as integers factorisation, the discrete logarithm and Simon's problem) can be seen as specific instances of it. The traditional presentation of the quantum protocol for the abelian HSP is low-level, and relies heavily on the the interplay between classical group theory and complex vector spaces. Instead, we give a high-level diagrammatic presentation which showcases the quantum structures truly at play. Specifically, we provide the first fully diagrammatic proof of correctness for the abelian HSP protocol, showing that strongly complementary observables are the key ingredient to its success. Being fully diagrammatic, our proof extends beyond the traditional case of finite-dimensional quantum theory: for example, we can use it to show that Simon's problem can be efficiently solved in real quantum theory, and to obtain a protocol that solves the HSP for certain infinite abelian groups.

[1]  Bob Coecke,et al.  Interacting quantum observables: categorical algebra and diagrammatics , 2009, ArXiv.

[2]  R. Spekkens Evidence for the epistemic view of quantum states: A toy theory , 2004, quant-ph/0401052.

[3]  B. Coecke Quantum picturalism , 2009, 0908.1787.

[4]  B. Coecke,et al.  Spekkens's toy theory as a category of processes , 2011, 1108.1978.

[5]  今井 浩 20世紀の名著名論:Peter Shor : Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 2004 .

[6]  Bill Edwards,et al.  Phase Groups and the Origin of Non-locality for Qubits , 2010, QPL@MFPS.

[7]  Frobenius,et al.  Ueber Gruppen von vertauschbaren Elementen. , 1879 .

[8]  Jamie Vicary Topological Structure of Quantum Algorithms , 2013, 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science.

[9]  B. Coecke,et al.  Classical and quantum structuralism , 2009, 0904.1997.

[10]  William Zeng,et al.  Models of Quantum Algorithms in Sets and Relations , 2015, ArXiv.

[11]  Damian Markham,et al.  Quantum protocols within Spekkens' toy model , 2016, 1608.09012.

[12]  Oded Regev Quantum Computation and Lattice Problems , 2004, SIAM J. Comput..

[13]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[14]  Umesh V. Vazirani,et al.  Quantum Complexity Theory , 1997, SIAM J. Comput..

[15]  Dusko Pavlovic,et al.  A new description of orthogonal bases , 2008, Mathematical Structures in Computer Science.

[16]  Giacomo Mauro D'Ariano,et al.  The Feynman problem and Fermionic entanglement: Fermionic theory versus qubit theory , 2014, 1403.2674.

[18]  Miriam Backens,et al.  A Complete Graphical Calculus for Spekkens’ Toy Bit Theory , 2014, 1411.1618.

[19]  Ross Duncan,et al.  Interacting Frobenius Algebras are Hopf , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[20]  Richard Jozsa,et al.  Quantum factoring, discrete logarithms, and the hidden subgroup problem , 1996, Comput. Sci. Eng..

[21]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[22]  Stefano Gogioso,et al.  Infinite-dimensional Categorical Quantum Mechanics , 2016, QPL.

[23]  Alexander Russell,et al.  The Symmetric Group Defies Strong Fourier Sampling , 2008, SIAM J. Comput..

[24]  Ross Street,et al.  Traced monoidal categories , 1996 .

[25]  A. Joyal,et al.  The geometry of tensor calculus, I , 1991 .

[26]  Daniel R. Simon,et al.  On the power of quantum computation , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[27]  P. Selinger A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.

[28]  Journal für die reine und angewandte Mathematik , 1893 .

[29]  V. Buchstaber,et al.  Mathematical Proceedings of the Cambridge Philosophical Society , 1979 .

[30]  Alexander Russell,et al.  Normal subgroup reconstruction and quantum computation using group representations , 2000, STOC '00.

[31]  J. Vicary Categorical Formulation of Finite-Dimensional Quantum Algebras , 2008, 0805.0432.

[32]  Lorenzo Catani,et al.  Spekkens’ toy model in all dimensions and its relationship with stabiliser quantum mechanics , 2017, 1701.07801.

[33]  R. Jozsa Quantum algorithms and the Fourier transform , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  Aleks Kissinger,et al.  Pictures of processes : automated graph rewriting for monoidal categories and applications to quantum computing , 2012, ArXiv.

[35]  Martin Rötteler,et al.  Limitations of quantum coset states for graph isomorphism , 2006, STOC '06.